

RECUEIL DES EXERCICES DES TERMINALES SCIENTIFIQUES MATHÉMATIQUES

GUIDE DES CORRIGES

Proposé par :
AMADE Allarassem et BAIYABE Zoua

NOMBRES COMPLEXES

Corrigés

Exercice n°1

$$1) \lambda^2 = -1; \lambda^3 = -i; \lambda^4 = 1$$

$$2) i^{2006} = e^{i\frac{2006\pi}{2}} = e^{i1003\pi} = -1$$

$$i^{2009} = e^{i\frac{2009\pi}{2}} = e^{i\pi} = -1$$

$$3) \lambda^n = \cos \frac{n\pi}{2} + i \sin \frac{n\pi}{2}$$

$$\cos \frac{n\pi}{2} = 0 \Rightarrow \frac{n\pi}{2} = \frac{\pi}{2} + 2k\pi$$

$$n = 1 + 4k \quad (k \in \mathbb{N})$$

Exercice n°2

$$1) z = \frac{1}{4} - 2 \times \frac{1}{2} i \times \frac{\sqrt{3}}{2} - \frac{3}{4} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$$

$$2) z = \frac{1}{4} + \frac{3}{4} = 1$$

$$3) z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$4) z = \frac{2+4i-2}{1-2i-1} = -2$$

Exercice n°3

$$a) z = 2 \left[\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right]$$

$$b) z = \frac{\sqrt{2}}{2} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right]$$

$$z = \frac{\sqrt{2}}{2} \left[\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right]$$

$$c) z = \cos \left(-\frac{\pi}{2} \right) + i \sin \left(-\frac{\pi}{2} \right)$$

$$d) z = \cos(-\theta) + i \sin(-\theta)$$

Exercice 4

$$(1+i\sqrt{3})^5 = 2^5 e^{i\frac{5\pi}{3}} = 32 e^{i\frac{5\pi}{3}}$$

$$(1+i\sqrt{3})^5 = 16 - 16i\sqrt{3}$$

$$(-1-i\sqrt{3})^5 = 32 e^{-i\frac{5\pi}{3}} = 16 + 16i\sqrt{3}$$

Exercice n°5

$$1) z_1 = \sqrt{2} e^{i\frac{\pi}{4}} \times \sqrt{2} e^{i\frac{\pi}{4}} = 2 e^{i\frac{\pi}{2}}$$

$$2) z_2 = 2 e^{i\frac{\pi}{6}} \times 2 e^{i\frac{2\pi}{3}} = 4 e^{i\frac{5\pi}{6}}$$

$$3) z_3 = \frac{\sqrt{2} e^{-i\frac{\pi}{4}} \times e^{i\frac{\pi}{4}}}{2 e^{i\frac{\pi}{3}}} = \frac{\sqrt{2}}{2} e^{-i\frac{\pi}{3}}$$

$$4) z_4 = \frac{e^{i\frac{2\pi}{3}}}{2 e^{i\frac{\pi}{4}}} = \frac{1}{2} e^{-i\left(\frac{2\pi}{3} + \frac{\pi}{4}\right)}$$

$$5) z_5 = \frac{5\sqrt{2} e^{-i\frac{\pi}{4}}}{10} \times e^{-i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} e^{-i\frac{\pi}{2}}$$

$$6) z_6 = \left(\frac{2 e^{i\frac{\pi}{6}}}{\sqrt{2} e^{i\frac{\pi}{4}}} \right)^{10} = \left(\sqrt{2} e^{i\frac{\pi}{6} - i\frac{\pi}{4}} \right)^{10}$$

$$z_6 = 32 e^{-i\frac{\pi}{6}}$$

Exercice n°6

$$1) z_1 = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$

$$z_2 = 2 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$$

$$z = \frac{z_1}{z_2} = \frac{1}{2} \left(\cos \left(-\frac{\pi}{2} \right) + i \sin \left(-\frac{\pi}{2} \right) \right)$$

$$2) A = \left(e^{i\frac{\pi}{3}} \right)^{36} = \cos 12\pi + i \sin 12\pi = 1$$

$$3) z^3 = 3 \Rightarrow z = 4(1+i\sqrt{3})$$

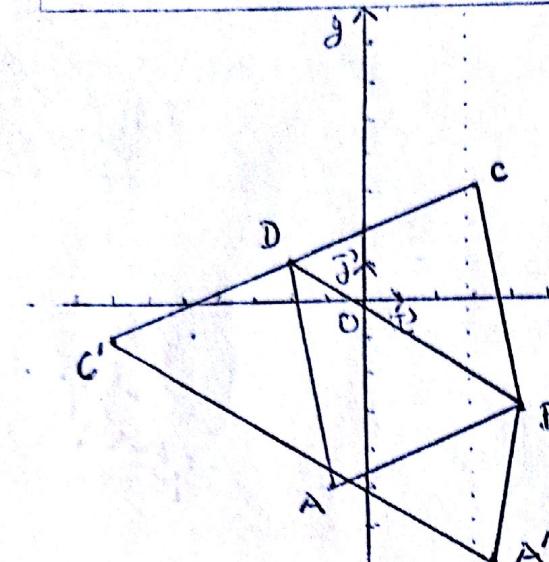
$$|z| = 8 \quad \arg z = \frac{\pi}{3} + 2k\pi$$

$$z^3 = 3 \quad \left(\begin{array}{l} r = \sqrt[3]{8} = 2 \\ \theta = \frac{\pi}{9} + 2k\pi \end{array} \right)$$

$$z_k = 2 e^{i\left(\frac{\pi}{9} + 2k\pi\right)} \quad (k \in \{0, 1, 2\})$$

Exercice n°7

$$1) A \begin{pmatrix} -1 \\ -5 \end{pmatrix} \quad B \begin{pmatrix} 4 \\ -3 \end{pmatrix} \quad C \begin{pmatrix} 3 \\ 3 \end{pmatrix} \quad D \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$



$$3) z'_c = 2z_D - z_c = -7 - i \Rightarrow C'(-7)$$

$$4) z_{A'} - z_D = z_B - z_D + z_C - z_D \\ \Rightarrow z_{A'} = 3 - 7i$$

5) $A'B'C'D'$ est un trapèze.

Exercice 08

$$1) z_A = 4 - 3i; z_B = 4 + 5i; z_C = -3 + 2i$$

$$2) z_{\overrightarrow{AB}} = z_B - z_A = 3 + 6i$$

$$z_{\overrightarrow{AC}} = z_C - z_A = -4 + 5i$$

$$z_{\overrightarrow{BC}} = z_C - z_B = -7 - 3i$$

$$3) z_D = 3 + 14i$$

$$3\overrightarrow{BE} = \overrightarrow{BC} \Rightarrow z_E = \frac{z_{\overrightarrow{BC}} + 3z_B}{3}$$

$$z_E = \frac{5}{3} + 4i$$

$$4) \overrightarrow{AD} = 2\overrightarrow{AB} + \overrightarrow{AC} \\ = 2\overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{BC} \\ = 3\overrightarrow{AB} + 3\overrightarrow{BE}$$

$\overrightarrow{AD} = 3\overrightarrow{AE}$ alors A, D, E sont alignés.

Exercice n° 9

$$1) z_E = \frac{z_A + z_B}{2} = 2 + i$$

2) $\frac{z_B - z_C}{z_A - z_C} = i$ alors ABC est un triangle rectangle et isocèle en C .

$$3) z_D = \overline{z_B} = 4 - i$$

$$4) \frac{z_C - z_A}{z_D - z_A} = \frac{z_C - z_B}{z_D - z_B} \in \mathbb{R}^*$$

Exercice 10

$$1) z_1 = \sqrt{2} e^{i\frac{\pi}{4}}, z_2 = \sqrt{2} e^{i\frac{\pi}{4}}, z_3 = \sqrt{2} e^{i\frac{\pi}{4}}$$

$$2) z_2 = \frac{\sqrt{2} e^{i\frac{\pi}{4}}}{\sqrt{2} e^{i\pi}} = e^{-\frac{3\pi}{4}} \Rightarrow z_2 = e^{-\frac{i\pi}{4}} z_1$$

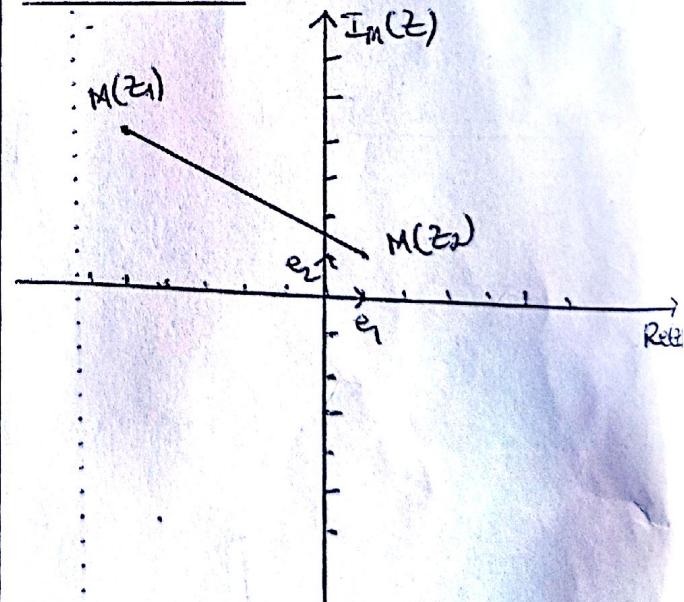
$$\Rightarrow \theta = -\frac{3\pi}{4}$$

$$3) a) z_2 - z_1 = e^{i\theta} z_1 - z_1 = (e^{i\theta} - 1) z_1$$

$$z_3 - z_1 = \overline{z_2} - z_1 = (\overline{e^{i\theta}} - 1) z_1$$

$$b) X = \frac{(e^{i\theta} - 1) z_1}{(e^{i\theta} - 1) z_1} = -e^{i\theta} = e^{i(\theta + \pi)}$$

Exercice 11



$$2) z_1 = -4 + 4i = 4\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

$$z_2 = 1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

$$\frac{z_1}{z_2} = 4 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$$

$$3) z_1 \times z_2 = (-4+4i)(1+i) = -8$$

$$z = 8(\cos \pi + i \sin \pi)$$

Corrigés

Exercice 12

$$1) z_1 = \sqrt{2} e^{-i\frac{\pi}{6}} ; z_2 = \sqrt{2} e^{-i\frac{\pi}{4}}$$

$$2) z = \frac{e^{-i\frac{\pi}{6}}}{e^{i\frac{\pi}{4}}} = e^{i(\frac{\pi}{6} + \frac{\pi}{4})} = e^{i\frac{\pi}{12}}$$

$$3) z = \frac{\sqrt{6} - i\sqrt{2}}{2 - 2i} = \frac{\sqrt{6} + \sqrt{2}}{4} + i \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\frac{\sqrt{6} + \sqrt{2}}{4} + i \frac{\sqrt{6} - \sqrt{2}}{4} = \cos \frac{\pi}{12} + i \sin \frac{\pi}{12}$$

$$\begin{cases} \cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \\ \sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} \end{cases}$$

$$\frac{(\sqrt{6} + \sqrt{2}) \cos x + (\sqrt{6} - \sqrt{2}) \sin x}{4} = \frac{2}{4}$$

$$\cos \frac{\pi}{12} \cos x + \sin \frac{\pi}{12} \sin x = \frac{1}{2}$$

$$\cos \left(\frac{\pi}{12} - x \right) = \cos \frac{\pi}{3}$$

$$\frac{\pi}{12} - x = \frac{\pi}{3} + 2k\pi$$

$$\frac{\pi}{12} - x = -\frac{\pi}{3} + 2k\pi$$

$$S = \left\{ -\frac{\pi}{4} + 2k\pi; \frac{5\pi}{12} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

Exercice 13

$$1) a) u = 8 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

$$2) z^2 = u$$

$$a) z^2 = u \Leftrightarrow r^2 = 8 \Rightarrow r = 2\sqrt{2}$$

$$2\theta = \frac{\pi}{6} + 2k\pi$$

$$z_k = 2\sqrt{2} e^{i(\frac{\pi}{12} + k\pi)} \quad k \in \{0, 1\}$$

$$z_1 = 2\sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$$

$$z_2 = 2\sqrt{2} \left(\cos \frac{13\pi}{12} + i \sin \frac{13\pi}{12} \right)$$

$$b) z^2 = u \Rightarrow \begin{cases} x^2 + y^2 = 8 \\ x^2 - y^2 = 4\sqrt{3} \\ xy = 4 \end{cases}$$

$$z_1 = (\sqrt{3} + 1) + i(\sqrt{3} - 1)$$

$$z_2 = -(\sqrt{3} + 1) + i(-\sqrt{3} + 1)$$

$$3) \begin{cases} 2\sqrt{2} \cos \frac{\pi}{12} = \sqrt{3} + 1 \\ 2\sqrt{2} \sin \frac{\pi}{12} = \sqrt{3} - 1 \end{cases}$$

Exercice 14

$$1) z + \frac{1}{z} = \cos \alpha + i \sin \alpha + \frac{1}{\cos \alpha + i \sin \alpha}$$

$$= \cos \alpha + i \sin \alpha + \cos \alpha - i \sin \alpha$$

$$z + \frac{1}{z} = 2 \cos \alpha$$

$$z^n + \frac{1}{z^n} = \cos n\alpha + i \sin n\alpha + \cos n\alpha - i \sin n\alpha$$

$$z^n + \frac{1}{z^n} = 2 \cos n\alpha$$

$$2) \left(z + \frac{1}{z} \right)^6 = 2 \cos 6\alpha + 12 \cos 4\alpha + 30 \cos 2\alpha + 20$$

Exercice 15

$$1) z_1 = \frac{\sqrt{2}}{2} (1+i\sqrt{3}) = \sqrt{2} e^{i\frac{\pi}{3}}$$

$$z_2 = \sqrt{2} e^{-i\frac{\pi}{4}}$$

$$2) \frac{z_1}{z_2} = \frac{\sqrt{2}(1+i\sqrt{3})}{2-2i} = \frac{\sqrt{2}}{2} \times \frac{(1+i\sqrt{3})(1+i)}{2}$$

$$\frac{z_1}{z_2} = \frac{\sqrt{2}-\sqrt{6}}{4} + i \frac{\sqrt{2}+\sqrt{6}}{4}$$

$$3) \frac{z_1}{z_2} = \frac{e^{i\frac{\pi}{3}}}{e^{-i\frac{\pi}{4}}} = e^{i\frac{7\pi}{12}}$$

$$\frac{\sqrt{2}-\sqrt{6}}{4} + i \frac{\sqrt{2}+\sqrt{6}}{4} = \cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12}$$

$$\begin{cases} \cos \frac{7\pi}{12} = \frac{\sqrt{2}-\sqrt{6}}{4} \\ \sin \frac{7\pi}{12} = \frac{\sqrt{2}+\sqrt{6}}{2} \end{cases}$$

Exercice 16

$$1) z_1 = \frac{e^{i\pi}}{e^{i5\pi}} = e^{-\frac{i2\pi}{3}}$$

$$z_2 = \frac{4e^{i\pi}}{2e^{i\pi/3}} = 2e^{i\frac{5\pi}{6}}$$

$$2) z_1 \times z_2 = 2e^{i\frac{11\pi}{6}} = \sqrt{3} + i$$

$$\frac{z_1}{z_2} = \frac{1}{2} e^{-\frac{i3\pi}{2}} = \frac{1}{2} i$$

$$z_1^3 = e^{-i2\pi} = 1$$

$$\frac{z_2^6}{z_1^3} = \frac{2^6 \times e^{i5\pi}}{e^{-i2\pi}} = -2^6 = -64$$

Exercice 17

$$1) z = \frac{(\sqrt{3})^4 (1+i\sqrt{3})^4}{(1+i)^5} = \frac{9 \times 2^4 e^{i\frac{4\pi}{3}}}{(\sqrt{2})^5 e^{i\frac{5\pi}{4}}}$$

$$z = 18\sqrt{2} e^{i\frac{11\pi}{12}} \text{ avec}$$

$$z_1 = 4\sqrt{2} e^{i\frac{5\pi}{4}} \text{ et } z_2 = 144 e^{i\frac{4\pi}{3}}$$

$$2) z_1^5 = (1+i)^5 = (2i)(2i)(1+i)$$

$$z_1^5 = -4 - 4i$$

$$z_2^4 = (-6 + 6i\sqrt{3})(-6 + 6i\sqrt{3})$$

$$z_2^4 = -72 - 72i\sqrt{3}$$

$$z = \frac{-72 - 72i\sqrt{3}}{4 + 4i} = 9(\sqrt{3} + i(\sqrt{3} - 1))$$

$$\begin{cases} 18\sqrt{2} \cos \frac{\pi}{12} = 9(\sqrt{3} + 1) \\ 18\sqrt{2} \sin \frac{\pi}{12} = 9(\sqrt{3} - 1) \end{cases}$$

$$\begin{cases} \cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \\ \sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} \end{cases}$$

Exercice 18

$$1) z_1^3 = 2\sqrt{2} e^{i\frac{3\pi}{4}} ; z_2^2 = 4e^{i\frac{\pi}{3}}$$

$$z = \frac{\sqrt{2}}{2} e^{i\frac{5\pi}{12}}$$

$$2) z = \frac{(1+i)^3}{(\sqrt{3}+i)^2} = \frac{-2+2i}{2+2i\sqrt{3}}$$

$$z = \frac{\sqrt{3}-1}{4} + i \frac{\sqrt{3}+1}{4}$$

$$3) \begin{cases} \frac{\sqrt{2}}{2} \cos \frac{5\pi}{12} = \frac{\sqrt{3}-1}{4} \\ \frac{\sqrt{2}}{2} \sin \frac{5\pi}{12} = \frac{\sqrt{3}+1}{4} \end{cases}$$

Exercice 19

$$1) a) |z| = 2 \Rightarrow 1 + y^2 = 4$$

$$y = \pm \sqrt{3}$$

$$b) z_1 = -1 + i\sqrt{3} = 2 \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right)$$

$$z_2 = -1 - i\sqrt{3} = 2 \left(\cos \frac{8\pi}{3} + i \sin \frac{8\pi}{3} \right)$$

$$z^4 = 16 e^{i\frac{8\pi}{3}} = 16 e^{i\frac{2\pi}{3}} = -8 + 8i\sqrt{3}$$

$$2) b) z^4 = -8 + 8i\sqrt{3}$$

$$\begin{cases} r^4 = 16 \\ 4\theta = \frac{2\pi}{3} + 2k\pi \end{cases} \Rightarrow z_k = 2 e^{i\left(\frac{\pi}{6} + \frac{k\pi}{2}\right)}$$

$$k \in \{0, 1, 2, 3\}$$

Exercice 20

$$1) z = \frac{5+5i\sqrt{3}}{7-4i\sqrt{3}} = \frac{-97+97i\sqrt{3}}{97} = -1+i\sqrt{3}$$

$$z = 2e^{\frac{i2\pi}{3}}$$

$$2) z^n = 2^n \left(\cos \frac{2n\pi}{3} + i \sin \frac{2n\pi}{3} \right)$$

$$z^n \in \mathbb{R} \Leftrightarrow \sin \frac{2n\pi}{3} = 0$$

$$\frac{2n\pi}{3} = 0 + 2k\pi$$

$$n = 3k \quad k \in \mathbb{Z}^* (\mathbb{N}^*)$$

$$3) z^3 = 8 \Rightarrow n=3 \text{ pour } k=1$$

Exercice n°21

$$1) z^2 = (\sqrt{3}+1)^2 + 2i(\sqrt{3}+1)(\sqrt{3}-1) - (\sqrt{3}-1)^2$$

$$z^2 = 4\sqrt{3} + 4i$$

$$2) |z^2| = 8 \quad \arg z^2 = \frac{\pi}{6} + 2k\pi$$

$$3) |z| = \sqrt{8} = 2\sqrt{2} \quad 2\arg z = \frac{\pi}{6} + 2k\pi$$

$$\arg z = \frac{\pi}{12} + k\pi$$

$$4) 2\sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) = (\sqrt{3}+1) + i(\sqrt{3}-1)$$

$$\left\{ \begin{array}{l} 2\sqrt{2} \cos \frac{\pi}{12} = \sqrt{3}+1 \\ 2\sqrt{2} \sin \frac{\pi}{12} = \sqrt{3}-1 \end{array} \right.$$

$$\left\{ \begin{array}{l} \cos \frac{\pi}{12} = \frac{\sqrt{6}+\sqrt{2}}{4} \\ \sin \frac{\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4} \end{array} \right.$$

$$5) \frac{\sqrt{3}+1}{2\sqrt{2}} \cos \varphi + \frac{\sqrt{3}-1}{2\sqrt{2}} \sin \varphi = \frac{1}{2}$$

$$\cos \frac{\pi}{12} \cos \varphi + \sin \frac{\pi}{12} \sin \varphi = \frac{1}{2}$$

$$\cos \left(\frac{\pi}{12} - \varphi \right) = \cos \frac{\pi}{3}$$

$$\left\{ \begin{array}{l} \frac{\pi}{12} - \varphi = \frac{\pi}{3} + 2k\pi \\ \frac{\pi}{12} - \varphi = -\frac{\pi}{3} + 2k\pi \end{array} \right. \quad k \in \mathbb{Z}$$

Exercice n°22

$$1) |z_1| = (\sqrt{3}+1) \times |1+i| = (\sqrt{3}+1)\sqrt{2}$$

$$|z_2| = (\sqrt{3}-1) \times |-1+i| = (\sqrt{3}-1)\sqrt{2}$$

$$\arg z_1 = \arg(1+i) = \frac{\pi}{4} + 2k\pi$$

$$\arg z_2 = \arg(-1+i) = \frac{3\pi}{4} + 2k\pi$$

$$2) u = z_1 z_2$$

$$|u| = |z_1 z_2| = (\sqrt{3}+1)(\sqrt{3}-1)\sqrt{2} \times \sqrt{2}$$

$$|u| = 4$$

$$\arg u = \frac{\pi}{4} + \frac{3\pi}{4} = \frac{\pi}{2} + 2k\pi$$

$$\theta = \frac{z_1}{z_2} = \frac{\sqrt{3}+1}{\sqrt{3}-1} = 2 + \sqrt{3}$$

$$\arg \theta = \frac{\pi}{4} - \frac{3\pi}{4} = -\frac{\pi}{2} + 2k\pi$$

$$3) w = z_1 + z_2 = 2 + 2i\sqrt{3}$$

$$\arg w = \frac{\pi}{3} + 2k\pi, |w| = 4$$

$$t = z_1 - z_2 = 2\sqrt{3} + 2i$$

$$|t| = 4 \text{ et } \arg t = \frac{\pi}{6}$$

$$4) x = z_1^2 - z_2^2 = (z_1 - z_2)(z_1 + z_2)$$

$$|x| = |t| \times |w| = 16$$

$$\arg x = \arg t + \arg w = \frac{\pi}{2}$$

Exercice n°23

$$1) |z| = \sqrt{(1+\cos \theta)^2 + \sin^2 \theta}$$

$$|z| = \sqrt{2 + 2 \cos \theta} = \sqrt{2(1+\cos \theta)}$$

$$|z| = \sqrt{2} \left(\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \right)$$

$$|z| = \sqrt{4 \cos^2 \frac{\theta}{2}} = \left| 2 \cos \frac{\theta}{2} \right|$$

$$b) \pi \leq \theta \leq 2\pi \Rightarrow \frac{\pi}{2} \leq \theta \leq \pi$$

$$|z| = -2 \cos \frac{\theta}{2}$$

Exercice n°24

$$1) a = 1+i = \sqrt{2} e^{i\frac{\pi}{4}}$$

$$b = \frac{\sqrt{6}-i\sqrt{2}}{6} = \frac{\sqrt{2}(\sqrt{3}-i)}{6} = \frac{2\sqrt{2}e^{-i\frac{\pi}{6}}}{6}$$

$$b = \frac{\sqrt{2}}{3} e^{-i\frac{\pi}{6}}$$

$$2) c = a^2 \times b = 2e^{i\frac{\pi}{2}} \times \frac{2\sqrt{2}}{3} e^{-i\frac{\pi}{6}}$$

$$c = \frac{4\sqrt{2}}{3} e^{i\frac{\pi}{3}}$$

Exercice n°25

$$1) u^2 = (\sqrt{2}-i\sqrt{2})^2 + 2i\sqrt{2}(\sqrt{2}-i\sqrt{2})(2+i\sqrt{2}) - (\sqrt{2}+i\sqrt{2})^2$$

$$u^2 = -2\sqrt{2} + 2i\sqrt{2}$$

$$u^4 = (-2\sqrt{2} + 2i\sqrt{2})^2 = -16i$$

$$2) |u^4| = 16 \quad \arg u^4 = -\frac{\pi}{2} + 2k\pi = \frac{3\pi}{2} + 2k\pi$$

$$|u| = \sqrt{16} = 2$$

$$\arg u^4 = 4\arg u \Rightarrow \arg u = \frac{3\pi}{8} + 2k\pi$$

$$3) 2 \left(\cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8} \right) = \sqrt{2-i^2} + i\sqrt{2+i^2}$$

$$\left\{ \cos \frac{3\pi}{8} = \frac{\sqrt{2-i^2}}{2}, \quad \sin \frac{3\pi}{8} = \frac{\sqrt{2+i^2}}{2} \right.$$

$$4) |uz| = 8 \Rightarrow |u| \times |z| = 8$$

$$\Rightarrow |z| = 2, \text{ en posant } z = x+iy$$

l'ensemble des points M est un cercle de centre O(0) et de rayon $r = 2$.

Exercice n°26

$$1) a) z_A = 1+i\sqrt{3} = 2e^{i\frac{\pi}{3}}, z_B = 2e^{i\frac{\pi}{4}}$$

$$z = \frac{4e^{i\frac{2\pi}{3}}}{2e^{i\frac{\pi}{4}}} = 2e^{i\frac{5\pi}{12}}$$

$$z = \frac{(1+i\sqrt{3})(1+i\sqrt{3})}{\sqrt{2}+i\sqrt{2}} = \frac{(-2+2i\sqrt{3})(2-i\sqrt{2})}{4}$$

$$z = \frac{(\sqrt{6}-\sqrt{2})+i(\sqrt{6}+\sqrt{2})}{2}$$

$$c) z = 2 \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$$

$$\left\{ \cos \frac{5\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4} \right.$$

$$\left. \sin \frac{5\pi}{12} = \frac{\sqrt{6}+\sqrt{2}}{4} \right.$$

$$2) a) f(x) = (\sqrt{6}-\sqrt{2}) \cos x + (\sqrt{6}+\sqrt{2}) \sin x$$

$$= 4 \left[\frac{\sqrt{6}-\sqrt{2}}{4} \cos x + \frac{\sqrt{6}+\sqrt{2}}{4} \sin x \right]$$

$$= 4 \left[\cos \frac{5\pi}{12} \cos x + \sin \frac{5\pi}{12} \sin x \right]$$

$$f(x) = 4 \cos \left(x - \frac{5\pi}{12} \right)$$

$$b) f(x) = 2\sqrt{2} \Rightarrow \cos \left(\frac{5\pi}{12} - x \right) = \frac{\sqrt{2}}{2}$$

$$\left\{ \frac{5\pi}{12} - x = \frac{\pi}{4} + 2k\pi \right.$$

$$\left. \frac{5\pi}{12} - x = -\frac{\pi}{4} + 2k\pi \right.$$

avec $-\pi < x \leq \pi$.

Exercice n° 27

$$2) a = -\cos\theta + i\sin\theta = -(\cos\theta - i\sin\theta) = e^{i\pi - i\theta} \Rightarrow a = e^{i(\pi - \theta)}$$

$$b = \sin\theta + i\cos\theta = i(\cos\theta - i\sin\theta) = e^{i(\frac{\pi}{2} - \theta)}$$

$$c = -\sin\theta + i\cos\theta = i(\cos\theta + i\sin\theta) = e^{i(\frac{\pi}{2} + \theta)}$$

$$3) a = 1 + e^{i\theta} = e^{\frac{i\theta}{2}} e^{\frac{-i\theta}{2}} + e^{\frac{i\theta}{2}} x e^{\frac{i\theta}{2}} = e^{\frac{i\theta}{2}} (e^{\frac{-i\theta}{2}} + e^{\frac{i\theta}{2}}) = 2\cos\frac{\theta}{2} e^{\frac{i\theta}{2}}$$

$$|a| = |2\cos\frac{\theta}{2}| \text{ et } \arg a = \frac{\theta}{2} + 2k\pi$$

Exercice n° 28

$$1) j^2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

$$2) a) 1+j+j^2 = 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} - \frac{1}{2} - i\frac{\sqrt{3}}{2} = 0$$

$$b) j^3 = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1$$

$$c) \frac{1}{j} = \frac{2}{-1+i\sqrt{3}} = \frac{2(-1-i\sqrt{3})}{4} = j^2$$

$$d) \overline{j} = \overline{\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = j^2$$

$$3) (1+j)^{2025} = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{2025} = e^{i\frac{2025\pi}{3}}$$

$$(1+j)^{2025} = -1$$

$$5) \frac{z_A - z_B}{z_C - z_B} = \frac{1 + \frac{1}{2} - i\frac{\sqrt{3}}{2}}{-\frac{1}{2} - i\frac{\sqrt{3}}{2} + \frac{1}{2} - i\frac{\sqrt{3}}{2}} = \frac{3 - i\sqrt{3}}{-i\sqrt{3}} = 1 + i\sqrt{3}$$

$$\frac{z_A - z_B}{z_C - z_B} = 2e^{i\frac{\pi}{3}} \text{ alors } ABC \text{ est équilatéral.}$$

Exercice n° 30

$$1) \frac{1+z^2}{z} = 1 + (x+iy)^2 = 1 + x^2 + y^2 + 2ixy = \frac{x(1+x^2+y^2) + iy(-1+x^2+y^2)}{x^2+y^2}$$

$$1+z^2 \text{ est imaginaire pur} \Leftrightarrow z(x(1+x^2+y^2) = 0)$$

$$z = \emptyset$$

$$2) |z| = 1 \Rightarrow z\bar{z} = 1 \Rightarrow \bar{z} = \frac{1}{z}$$

$$\frac{\bar{z} + \bar{z}'}{1 + \bar{z}\bar{z}'} = \frac{\bar{z} + \bar{z}'}{1 + \bar{z}^2} \Rightarrow \bar{z} = z \Rightarrow z \in \mathbb{R}$$

$$3) |\bar{z} - 3| = 2 \Rightarrow |z_M - z_A| = 2$$

$$AM = 2$$

$$E = \{ \text{b} (r=2; A(3; 0)) \}$$

$$4) |z - 1 - 2i| = |z - 7 + 2i|$$

$$|(x-1) + i(y-2)| = |(x-7) + i(y+2)|$$

$$(x-1)^2 + (y-2)^2 = (x-7)^2 + (y+2)^2$$

$$x^2 - 2x + 1 + y^2 - 4y + 4 = x^2 - 14x + 49 + y^2 + 4y + 4$$

$$3x - 2y - 12 = 0.$$

Exercice n° 31

$$1) z = \frac{z+1}{z-2i} = \frac{(x+1)+iy}{x+i(y-2)} = \frac{[(x+1)+iy][x-i(y-2)]}{x^2 + (y-2)^2} = \frac{[(x+1)+iy(y-2)] + i[-(x+1)(y-2) + xy]}{x^2 + (y-2)^2}$$

$$z = \frac{x^2 + y^2 + x - 2y}{x^2 + (y-2)^2} + i \frac{2x - y + 2}{x^2 + (y-2)^2}$$

z est réel négatif $2x - y + 2 = 0$

2) On a l'équation de la droite privée de $A(0; 2)$

$$(D): 2x - y + 2 = 0$$

Exercice n° 32

$$1) D_f = \{z \in \mathbb{C} \mid z \neq i\}$$

$$2) f(z) = \frac{(x+iy)-1}{(x+iy)-2i} = \frac{(x-1)+iy}{x+i(y-2)}$$

$$= \frac{[(x-1)+iy][x-i(y-2)]}{x^2 + (y-2)^2}$$

$$= \frac{[x(x-1) + y(y-2)] + i[-(x-1)(y-2) + xy]}{x^2 + (y-2)^2}$$

$$f(z) \text{ est réel} \Rightarrow x^2 - x + y^2 - 2y = 0$$

$$(x - \frac{1}{2})^2 - 1 + (y - 1)^2 - 1 = 0$$

$$(x - \frac{1}{2})^2 + (y - 1)^2 = 2 = (\sqrt{2})^2$$

$$3) |f(z)| = 1 \Rightarrow \left| \frac{(x-1)+iy}{x+i(y-2)} \right| = 1$$

$$(x-1)^2 + y^2 = x^2 + (y-2)^2$$

$$-2x + 4y - 3 = 0$$

Exercice n° 33

$$1) z' = \frac{2z-1}{2-z} = \frac{2(z - \frac{1}{2})}{2-z}$$

$$|z'| = \frac{2|z_M - z_C|}{|z_D - z_M|} = \frac{2CM}{DM}$$

$$2) |z'| = 1 \Rightarrow 2CM = DM$$

$$\Rightarrow CM = \frac{1}{2} DM$$

Droite perpendiculaire passant par le milieu de $[CD]$.

3) (voir exo 32 pour une méthode similaire).

Corrigés

Exercice n° 34

$$1) f(z) = \frac{z-2i}{z+i} \Rightarrow f(i) = -\frac{i}{1+i}$$

$$f(i) = \frac{\sqrt{2}}{2} e^{i\frac{3\pi}{4}}$$

$$2) |f(z)| = \left| \frac{z_M - z_B}{z_M - z_A} \right| = \frac{BM}{AM}$$

$$|f(z)| = 1 \Rightarrow BM = AM$$

E_1 est la médiatrice du segment $[AB]$.

3) a) $f(z)$ est réel strictement négatif si π est un argument de $f(z)$. Donc E_2 est le segment $[AB]$.

b) E_3 est le cercle de diamètre $[AB]$ privé de A et B .

$$4) a) |f(z) - 1| \times |z+1| = \left| \frac{z-2i}{z+1} - 1 \right| \times |z+1|$$

$$|f(z) - 1| \times |z+1| = |-1-2i| = \sqrt{5}$$

$$b) AM = \frac{\sqrt{5}}{2}$$

$$|f(z) - 1| \times |z+1| = \sqrt{5}$$

$$|z_M - z_A| |z_M - z_A| = \sqrt{5}$$

$$AM' \times AM = \sqrt{5} \Rightarrow AM' = \frac{\sqrt{5}}{AM} = 2$$

donc $M' \in f'(r=2; S \cup (1; 0))$.

Exercice n° 35

$$1) z' = \frac{z-3}{z-2i} = \frac{(x-3)+iy}{x+i(y-2)}$$

$$= \frac{[(x-3)+iy][x-i(y-2)]}{x^2 + (y-2)^2}$$

$$= \frac{x(x-3) + y(y-2) + i(-(x-3)(y-2) + xy)}{x^2 + (y-2)^2}$$

$$\left\{ \begin{array}{l} x' = \frac{x(x-3) + y(y-2)}{x^2 + (y-2)^2} \\ y' = -\frac{(x-3)(y-2) + xy}{x^2 + (y-2)^2} \end{array} \right.$$

$$2) \text{ a) } |z'| = 1$$

$$\left| \frac{(x-3) + iy}{x + i(y-2)} \right| = 1$$

$$(x-3)^2 + y^2 = x^2 + (y-2)^2$$

$$4y - 6x + 5 = 0$$

$$\text{b) } |z'| = 2$$

$$(x-3)^2 + y^2 = 4(x^2 + (y-2)^2)$$

$$3x^2 + 3y^2 - 16y - 6x = 7$$

$$x^2 + y^2 - 2x - \frac{16}{3}y = \frac{7}{3}$$

$$(x^2 - 2x) + (y^2 - \frac{16}{3}y) = \frac{7}{3}$$

$$3) \text{ a) } z' \in \mathbb{R}, \Rightarrow -(x-3)(y-2) + xy = 0$$

$$\text{b) } z' \in i\mathbb{R} \Rightarrow x(x-3) + y(y-2) = 0$$

Exercice n°36

$$\begin{aligned} 1) z &= \frac{it-1}{z-1} = \frac{ix-y-1}{(x-1)+iy} \\ 0) &= \frac{[-(y-1)+ix][(x-1)-iy]}{(x-1)^2+y^2} \end{aligned}$$

$$z = \frac{(-x+y+1)}{(x-1)^2+y^2} + i \frac{(x^2+y^2-x+y)}{(x-1)^2+y^2}$$

$$\text{b) } x=0 \Rightarrow y=x-1, \text{ (D) est une droite}$$

$$2) \text{ a) } \arg w = \text{mes}(\overrightarrow{AM}, \overrightarrow{BM})$$

$$z = \frac{i(z+i)}{z-1} = iw$$

$$\text{b) si } z=0 \Rightarrow \overline{z}=1 \quad \arg z=0$$

$$\arg iW = \arg i + \arg w = 0$$

$$\arg w = -\frac{\pi}{2} \Rightarrow \text{mes}(\overrightarrow{AM}, \overrightarrow{BM}) = -\frac{\pi}{2}$$

(E) est le demi-cercle de diamètre [AB] contenant 0 privée de A et B.

Exercice n°37

$$\begin{aligned} z &= \frac{x+i(y+1)}{(x-1)+iy} \\ &= \frac{[x+i(y+1)][(x-1)-iy]}{(x-1)^2+y^2} \end{aligned}$$

$$z = \frac{x^2+y^2-1}{(x-1)^2+y^2} + i \frac{2x}{(x-1)^2+y^2}$$

$$1) z \in \mathbb{R}_+^* \Rightarrow x=0 \text{ et } y^2+x^2-1>0$$

$y \in]-\infty; 1[\cup]1; +\infty[$, A(i), B(-2i) C(-i) et D(-2i). C'est la réunion des demi-droites JAB et JCD privées de A et C.

$$2) z \in \mathbb{R}_-^* \quad x=0 \quad y^2-1<0$$

$-1 < y < 1$. C'est le segment ouvert JAC.

$$3) z \in i\mathbb{R}; \quad x^2+y^2=1$$

C'est un cercle trigonométrique

$$4) |z|=i \Rightarrow (y+1)^2+x^2=(x-1)^2+y^2$$

C'est la médiatrice du segment [AC].

$$5) |z|=3 \Rightarrow (y+1)^2+x^2=9[(x-1)^2+y^2]$$

$$8x^2+8y^2-18x-2y+8=0$$

$$x^2-\frac{9}{4}x+y^2-\frac{1}{4}y+1=0$$

$$\left(x - \frac{9}{8}\right)^2 + \left(y - \frac{1}{8}\right)^2 = \frac{9}{32}$$

Exercice n° 38

$$z = \frac{(x-2) + i(y+4)}{(x+1) + i(y-2)}$$

$$z = \frac{[(x-2) + i(y+4)][(x+1) - i(y-2)]}{(x+1)^2 + (y-2)^2}$$

$$= \frac{[(x-2)(x+1) + (y+4)(y-2)] + i[-(x-2)(y-2) + (x+1)(y+4)]}{(x+1)^2 + (y-2)^2}$$

$$z = \frac{x^2 + y^2 - x + 2y - 10}{(x+1)^2 + (y-2)^2} + i \frac{-2x + y - 8}{(x+1)^2 + (y-2)^2}$$

$$1) -2x + y - 8 = 0 \Rightarrow y = 2x + 8$$

C'est une droite

$$2) x^2 + y^2 - x + 2y - 10 = 0$$

$$\left(x - \frac{1}{2}\right)^2 + (y+1)^2 - \frac{1}{4} - 1 - 10 = 0$$

$$\left(x - \frac{1}{2}\right)^2 + (y+1)^2 = \frac{45}{4} = \left(\frac{3\sqrt{5}}{2}\right)^2$$

$$(f) = \left(r = \frac{3\sqrt{5}}{2}, \text{SL}\left(\frac{1}{2}\right)\right)$$

$$3) |z| = 1 \Rightarrow (x-2)^2 + (y+4)^2 = (x+1)^2 + (y-2)^2$$

La médiatrice du segment $[AB]$ avec $z_A = 2-4i$ et $z_B = -1+2i$.

$$4) |z| = 2$$

$$(x-2)^2 + (y+4)^2 = 4[(x+1)^2 + (y-2)^2]$$

$$3x^2 + 3y^2 + 12x - 24y = 0$$

$$(x^2 + 4x) + (y^2 - 8y) = 0$$

$$(x+2)^2 + (y-4)^2 = (2\sqrt{5})^2$$

$$(f) = \left(r = 2\sqrt{5}, \text{SL}(-2, 4)\right)$$

Exercice n° 40

$$1) f(M) = M \Rightarrow \frac{2iz - 5}{z - 2i} = z$$

$$z^2 - 4iz + 5 = 0$$

$$z = -i \text{ et } z = 5i$$

$$2) z' = \frac{2iz - 5}{z - 2i} \Rightarrow z'z - 2iz' = 2i - 5$$

$$\Rightarrow z = \frac{2iz' - 5}{z' - 2i}$$

$f = f^{-1}$ alors
une bijection

$$4) |z' - 2i| \times |z - 2i| = 9$$

$$z' - 2i = \frac{2iz - 5}{z - 2i} - 2i = \frac{-9}{z - 2i}$$

$$|z' - 2i| = \left| \frac{-9}{z - 2i} \right|$$

$$\Rightarrow |z' - 2i| \times |z - 2i| = 9.$$

b) $f(\mathbb{C})$ est un cercle de centre A et de rayon $\frac{9}{R}$. $f(\mathbb{C})$ est globalement invariant alors $\frac{9}{R} = R \Rightarrow R = 3$.

Exercice n° 41

$$1) z^3 = -i \Rightarrow r^3 = 1$$

$$3\theta = -\frac{\pi}{2} + 2k\pi$$

$$z_k = e^{i\left(-\frac{\pi}{6} + \frac{2k\pi}{3}\right)} \text{ avec } k \in \{0, 1, 2\}$$

$$2) [(1-i)z]^3 = -i \text{ en posant } x = (1-i)z$$

$$x^3 = -i \quad \left\{ \begin{array}{l} (1-i)z_0 = e^{-i\frac{\pi}{6}} \\ (1-i)z_1 = e^{i\frac{\pi}{2}} \\ (1-i)z_2 = e^{i\frac{5\pi}{6}} \end{array} \right. \Rightarrow z_0 = \frac{e^{-i\frac{\pi}{6}}}{1-i}$$

$$z_1 = \frac{e^{i\frac{\pi}{2}}}{1-i}$$

$$z_2 = \frac{e^{i\frac{5\pi}{6}}}{1-i}$$

Exercice n° 42

$$1) \frac{z-2}{z-1} = z \Rightarrow z^2 - 2z + 2 = 0$$

$$2) \frac{z-2}{z-1} = i \Rightarrow z = \frac{2-i}{1-i}$$

$$z = \frac{3}{2} + \frac{1}{2}i$$

$$3) a) \frac{z-2}{z-1} = \frac{z_M - z_B}{z_M - z_A}$$

$$\left| \frac{z_M - z_B}{z_M - z_A} \right| = \frac{|z_M|}{|z_A|}$$

$$\arg\left(\frac{z-2}{z-1}\right) = \text{mes}(\vec{AM}, \vec{BM})$$

$$b) \left| \frac{(x-2)+iy}{(x-1)+iy} \right| = 1$$

$$(x-2)^2 + y^2 = (x-1)^2 + y^2$$

$$x = \frac{3}{2}$$

$$4) a) \left| \left(\frac{z-2}{z-1} \right)^n \right| = |i| = 1$$

$$\left| \left(\frac{z-2}{z-1} \right)^n \right| = \sqrt[n]{1} = 1$$

$$\Rightarrow x = \frac{3}{2}$$

$$b) \left(\frac{z-2}{z-1} \right)^2 = i$$

$$x^2 = i \Rightarrow x = e^{i(\frac{\pi}{4} + k\pi)}$$

$$x_0 = e^{i\frac{\pi}{4}} \Rightarrow z_0 = \frac{2 - e^{i\frac{\pi}{4}}}{1 - e^{i\frac{\pi}{4}}}$$

$$x_1 = e^{i\frac{5\pi}{4}} \Rightarrow z_1 = \frac{2 - e^{i\frac{5\pi}{4}}}{1 - e^{i\frac{5\pi}{4}}}$$

Corrigés

$$z_0 = \frac{(-\sqrt{2}+4) - i\sqrt{2}}{(-\sqrt{2}+2) - i\sqrt{2}} = \frac{3}{2} + 1,207i$$

$$z_1 = \frac{(\sqrt{2}+4) + i\sqrt{2}}{(\sqrt{2}+2) + i\sqrt{2}} = \frac{3}{2} - 0,207i$$

Exercice n° 43

$$a) z^2 = 48 + 14i \Rightarrow |z| = 50$$

$$\begin{cases} x^2 + y^2 = 50 \\ x^2 - y^2 = 48 \end{cases} \Rightarrow \begin{cases} x = \pm 7 \\ y = \pm 1 \end{cases}$$

$$z_1 = 7 + i \quad z_2 = -7 - i$$

$$b) z^2 = 3 - 4i \quad |z| = 5$$

$$\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \end{cases} \Rightarrow \begin{cases} x = \pm 2 \\ y = \pm 1 \end{cases}$$

$$z_1 = -2 + i \quad \text{et} \quad z_2 = 2 - i$$

$$c) z^2 = -\sin^2 \alpha = (i \sin \alpha)^2$$

$$z_1 = i \sin \alpha \quad \text{et} \quad z_2 = -i \sin \alpha$$

$$d) z^3 - i = 0 \Rightarrow z^3 = i$$

$$z_k = e^{i(\frac{\pi}{6} + \frac{2k\pi}{3})} \quad k \in \{0, 1, 2\}$$

$$z_0 = e^{i\frac{\pi}{6}} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$z_1 = e^{i\frac{7\pi}{6}} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$z_3 = e^{i\frac{13\pi}{6}} = -i$$

$$e) z^3 + 8 = 0 \Rightarrow z^3 = -8$$

$$\begin{cases} r = 2 \\ \theta = \frac{\pi}{3} + \frac{2k\pi}{3} \end{cases} \Rightarrow z_k = 2e^{i(\frac{\pi}{6} + \frac{2k\pi}{3})} \quad k \in \{0, 1, 2\}$$

$$z_0 = 2e^{i\frac{\pi}{3}} = 1 + i\sqrt{3}$$

$$z_1 = 2e^{i\frac{7\pi}{6}} = -2$$

$$z_2 = 2e^{i\frac{13\pi}{6}} = 1 - i\sqrt{3}$$

f) $z^4 - 2^4 = (z^2 - 2^2)(z^2 + 2^2)$
 $(z-2)(z+2)(z+2i)(z-2i) = 0$
 $z=2 \text{ ou } z=-2 \text{ ou } z=-2i \text{ ou } z=2i$

g) $z^4 + 2z^2 = z^2(z^2 + 2)$
 $z=0 \text{ ou } z=i\sqrt{2} \text{ ou } z=-i\sqrt{2}$

Exercice n°44

1) $z^2 - 2iz - 2 = 0$
 $\Delta = 4 \Rightarrow S = \{-1+i; 1+i\}$

2) $4z^2 - 12z + 153 = 0$
 $\Delta = (48i)^2 \Rightarrow S = \left\{ \frac{3}{2} - 6i; \frac{3}{2} + 6i \right\}$

3) $z^2 + (-4+i)z + 5+i = 0$
 $\Delta = -5 - 12i; u_1 = z-3i; u_2 = -2+i$
 $\Rightarrow S = \{1+i; 3-2i\}$

4) $i^2 z^2 + (1-5i)z + 6i - 2 = 0$
 $\Delta = -18i \Rightarrow u_1 = -3+3i; u_2 = 3-3i$
 $\Rightarrow S = \{1-i; 4+2i\}$

5) $z^2 + (1-2i)z - 1 - i = 0$
 $\Delta = 1 \Rightarrow S = \{i; -1+i\}$

6) $z^4 - \sqrt{2}z^2 + 1 = 0$
 $x^2 - \sqrt{2}x + 1 = 0$
 $\Delta_x = (\sqrt{2})^2 \Rightarrow \left\{ x_1 = \frac{\sqrt{2} - i\sqrt{2}}{2}; x_2 = \frac{\sqrt{2} + i\sqrt{2}}{2} \right.$
 $\left. \begin{cases} z^2 = e^{-i\frac{\pi}{4}} \\ z^2 = e^{i\frac{\pi}{4}} \end{cases} \Rightarrow z_k = e^{\frac{i(\frac{\pi}{8} + k\pi)}{2}} \right.$
 $S = \left\{ e^{-i\frac{\pi}{8}}; e^{i\frac{\pi}{8}}; e^{i\frac{3\pi}{8}}; e^{i\frac{9\pi}{8}} \right\}$

7) $z^4 + 8z^2 + 48 = 0$
 $\Delta = (16i)^2$

$\left\{ \begin{array}{l} x_1 = -4i \Rightarrow z = -4i \\ x_2 = 12i \end{array} \right\} z^2 = 12i$

$\left\{ \begin{array}{l} z^2 = -4i \Rightarrow \left\{ \begin{array}{l} x^2 + y^2 = 4 \\ x^2 - y^2 = 0 \end{array} \right. \Rightarrow z_0 = \sqrt{2} - i\sqrt{2} \\ z^2 = 12i \end{array} \right\} z_1 = -\sqrt{2} + i\sqrt{2}$

$\left\{ \begin{array}{l} z^2 = 12i \Rightarrow \left\{ \begin{array}{l} x^2 + y^2 = 12 \\ x^2 - y^2 = 0 \end{array} \right. \Rightarrow z_2 = \sqrt{6} + i\sqrt{6} \\ z^2 = -12i \end{array} \right\} z_3 = -\sqrt{6} - i\sqrt{6}$

8) $(z^2 - 4z + 5)^2 + (z+1)^2 = 0$
 $(z^2 - 4z + 5)^2 = i^2(z+1)^2$

$\left\{ \begin{array}{l} z^2 - 4z + 5 = i(z+1) \\ z^2 - 4z + 5 = -i(z+1) \end{array} \right.$

$\left\{ \begin{array}{l} z^2 - (4+i)z + 5 - i = 0 \quad (1) \\ z^2 + (-4+i)z + 5 + i = 0 \quad (2) \end{array} \right.$

$\Delta_1 = -5 + 12i \quad u_1 = -2 - 3i$
 $u_2 = 2 + 3i$

$z_1 = 1 - i \text{ et } z_2 = 3 + 2i$

$\Delta_2 = -5 - 12i \quad u_1 = 2 - 3i$
 $u_2 = -2 + 3i$

$z_3 = 3 - 2i \text{ et } z_4 = 1 + i$

9) $(-iz + 3i + 3)^2 - 2(-iz + 3i + 3) + 2 = 0$
 $x^2 - 2x + 2 = 0$

$\Delta = (2i)^2$

$\left\{ \begin{array}{l} x_1 = 1 - i \Rightarrow -iz + 3i + 3 = 1 - i \\ x_2 = 1 + i \end{array} \right\} -iz + 3i + 3 = 1 + i$

Exercice n°47

$\left\{ \begin{array}{l} iz_1 - \frac{\sqrt{3}}{2}z_2 = -1 \\ 2z_1 + z_2 = 2\sqrt{3} \end{array} \right.$

$$\begin{cases} i\bar{z}_1 - \frac{\sqrt{3}}{2} \bar{z}_2 = -1 \\ \frac{\sqrt{3}}{2} 2\bar{z}_1 + \bar{z}_2 = 2\sqrt{3} \end{cases}$$

$$\bar{z}_1(\sqrt{3} + i) = 2$$

$$\bar{z}_1 = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

$$\bar{z}_2 = 2\sqrt{3} - 2\bar{z}_1 = \sqrt{3} + i$$

$$\text{D'où } \bar{z}_2 = 2\bar{z}_1$$

$$2) \bar{z}_A = \sqrt{3} + i = 2e^{i\frac{\pi}{6}}$$

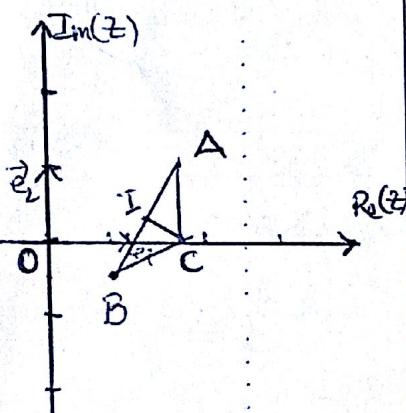
$$\bar{z}_B = \frac{\sqrt{3}}{2} - \frac{1}{2}i = e^{-i\frac{\pi}{6}}$$

$$a) Y = \frac{\bar{z}_A}{\bar{z}_B} = \frac{4e^{i\frac{\pi}{3}}}{e^{-i\frac{\pi}{6}}} = 4e^{i\frac{5\pi}{6}}$$

$$Y = 4 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$$

$$b) \bar{z}_B^{2022} = e^{-i\frac{2006\pi}{6}} = -1$$

c)



$$d) \bar{z}_I = \frac{\bar{z}_A + \bar{z}_B}{2} = \frac{3\sqrt{3}}{4} + \frac{1}{4}i$$

e) $AC = BC = 1$ alors ABC est un triangle isocèle en C .

$$f) A(ABC) = \frac{AB \times CI}{2}$$

Exercice n° 48

$$1) \bar{z}^2 - (\sqrt{3} + i\sqrt{3})\bar{z} + 2i = 0$$

Corrigés

$$\Delta = (\sqrt{3} + i\sqrt{3}) - 8i = -2i = (1-i)^2$$

$$\bar{z}_1 = \frac{\sqrt{3} + i\sqrt{3} - 1 + i}{2}, \bar{z}_2 = \frac{\sqrt{3} + i\sqrt{3} + 1 - i}{2}$$

$$S = \left\{ \frac{\sqrt{3} - 1}{2} + i\left(\frac{\sqrt{3} + 1}{2}\right), \frac{\sqrt{3} + 1}{2} + i\left(\frac{\sqrt{3} - 1}{2}\right) \right\}$$

$$2) \frac{c}{a} = \frac{(\sqrt{3} - 1) + i(\sqrt{3} + 1)}{2 - 2i}$$

$$= \frac{[(\sqrt{3} - 1) + i(\sqrt{3} + 1)][1 + i]}{4}$$

$$\frac{c}{a} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$b) \frac{c}{a} = e^{i\frac{2\pi}{3}} \Rightarrow \left| \frac{c}{a} \right| = 1 \Rightarrow |c| = |a| = \sqrt{2}$$

$$c) c = b - a = \frac{\sqrt{3} + 1}{2} + i\frac{(\sqrt{3} - 1)}{2} - 1 + i$$

$$c = \frac{\sqrt{3} - 1}{2} + i\frac{(\sqrt{3} + 1)}{2}$$

$$3) a) \frac{\bar{z}_C - \bar{z}_B}{\bar{z}_A - \bar{z}_B} = \frac{c - b}{a - b} = \frac{-a}{-(b - a)} = \frac{a}{c}$$

$$\left| \frac{\bar{z}_C - \bar{z}_B}{\bar{z}_A - \bar{z}_B} \right| = \left| \frac{a}{c} \right| = 1 \Rightarrow BC = BA$$

alors ABC est isocèle en B .

$$b) \text{mes}(\overrightarrow{BA}, \overrightarrow{BC}) = \arg \left(\frac{\bar{z}_C - \bar{z}_B}{\bar{z}_A - \bar{z}_B} \right)$$

$$= \arg \frac{a}{c} = \arg a - \arg c.$$

$$\text{mes}(\overrightarrow{BA}, \overrightarrow{BC}) = -\frac{\pi}{4} - \frac{2\pi}{3} = -\frac{11\pi}{12}.$$

c)

$$\begin{cases} S(B) = B \\ S(A) = C \end{cases} \Rightarrow \begin{cases} \bar{z}_B = \alpha \bar{z}_B + B \\ \bar{z}_C = \alpha \bar{z}_A + B. \end{cases}$$

$$\alpha = \frac{\bar{z}_B - \bar{z}_C}{\bar{z}_B - \bar{z}_A} = \frac{a}{c} = i$$

Exercice n° 49

$$1) (1+i\sqrt{3})^2 = 1+2i\sqrt{3}-3 = -2+4i\sqrt{3}$$

$$2) z^2 + 2z + 19 - 18i\sqrt{3} = 0$$

$$\Delta = -72 + 72i\sqrt{3} = [6(1+i\sqrt{3})]^2$$

$$S' = \{-4+3i\sqrt{3}, -4-3i\sqrt{3}\}$$

$$3) (z^2+4)^2 + (3iz+6)^2 = 0$$

$$(z^2+4)^2 = -(3iz+6)^2$$

$$(z^2+4)^2 = (i(3iz+6))^2$$

$$z^2+4 = i(3iz+6)$$

$$z^2+4 = -i(3iz+6)$$

$$\left. \begin{array}{l} z^2 + 3z + 4 - 6i = 0 \quad (1) \\ z^2 - 3z + 4 + 6i = 0 \quad (2) \end{array} \right\}$$

$$\Delta_1 = -7+24i = (3+4i)^2$$

$$\Delta_2 = -7-24i = (3-4i)^2$$

On en déduit les 4 solutions

Exercice n° 51

$$1) z^2 - 2i\bar{z} = 0$$

$$2) (x+iy)^2 - 2i(x-iy) = 0$$

$$(x^2 - y^2 - 2y) + 2ix(y-1) = 0$$

$$\left. \begin{array}{l} 2x(y-1) = 0 \quad (1) \\ x^2 - y^2 - 2y = 0 \quad (2) \end{array} \right\}$$

$$(1) \Rightarrow x=0 \text{ ou } y=1.$$

$$x=0 \Rightarrow y(y+2)=0 \Rightarrow y=0 \text{ ou } y=-2$$

$$z_1=0 \text{ ou } z_2=-2i$$

$$y=1 \Rightarrow x^2 - 3 = 0 \Rightarrow x = \pm\sqrt{3}$$

$$z_3 = -\sqrt{3} + i \text{ ou } z_4 = \sqrt{3} - i$$

$$S = \{0, -2i, -\sqrt{3} + i, \sqrt{3} - i\}$$

$$b) z_1 = -2i = 2e^{-i\frac{\pi}{2}}$$

$$z_2 = -\sqrt{3} + i = 2e^{i\frac{5\pi}{6}}$$

$$z_3 = \sqrt{3} + i = 2e^{i\frac{\pi}{6}}$$

$$2) \frac{z_c - z_A}{z_B - z_A} = \frac{-\sqrt{3} + 3i}{\sqrt{3} + 3i} = \frac{6 + 6i\sqrt{3}}{12}$$

$\frac{z_c - z_A}{z_B - z_A} e^{i\frac{\pi}{3}}$ alors ABC est équilatéral.

$$c) A = \frac{bxh}{2}$$

Exercice n° 52

$$1) \Delta = 144 \times 3 - 9 \times 4 \times 16 = -144$$

$$z_1 = \frac{2}{3}(-\sqrt{3} + i), z_2 = \frac{2}{3}(\sqrt{3} - i)$$

$$2) z_1 = \frac{4}{3} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$$

$$z_2 = \frac{4}{3} \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right)$$

$$3) \frac{z_1}{z_2} = e^{i\frac{5\pi}{4}}$$

$$\frac{z_1}{z_2} + \left(\frac{z_1}{z_2} \right)^5 = 2 \cos \frac{\pi}{3}.$$

Exercise n° 53

Comments

$$1) z^2 - (2r\cos\alpha)z + r^2 = 0$$

$$\Delta' = (r(\cos\alpha))^2 \Rightarrow z_1 = r(\cos\alpha + i\sin\alpha)$$

$$z_2 = r(\cos\alpha - i\sin\alpha)$$

$$2) |z_1| = r \text{ et } \arg z_1 = \alpha + 2k\pi$$

$$|z_2| = r \text{ et } \arg z_2 = -\alpha + 2k\pi$$

$$3) z_1^n = r^n (\cos n\alpha + i\sin n\alpha)$$

$$z_2^n = r^n (\cos n\alpha - i\sin n\alpha)$$

$$P_n = z_1^n + z_2^n = r^n \times 2 \cos n\alpha$$

$$\boxed{P_n = 2r^n \cos n\alpha}$$

$$4) r = \frac{1}{2}, \alpha = \frac{2\pi}{3} \Rightarrow P_n = 2 \left(\frac{1}{2}\right)^n \cos \frac{2n\pi}{3}$$

$$P_{n+3} = 2 \left(\frac{1}{2}\right)^{n+3} \cos \frac{2(n+3)\pi}{3}$$

$$= \frac{1}{8} \times 2 \left(\frac{1}{2}\right)^n \cos \left(\frac{2n\pi}{3} + 2\pi\right)$$

$$= \frac{1}{8} \left(2 \left(\frac{1}{2}\right)^n \cos \frac{2n\pi}{3}\right)$$

$$\boxed{P_{n+3} = \frac{1}{8} P_n}$$

$$5) -2 \times \left(\frac{1}{2}\right)^n \leq P_n \leq 2 \left(\frac{1}{2}\right)^n$$

$$\boxed{\lim_{n \rightarrow +\infty} P_n = 0}$$

Exercise n° 54

$$z_0 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$1) 1 + z_0 + z_0^2 = 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} + \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2$$

$$= \frac{1}{2} + i\frac{\sqrt{3}}{2} - \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

$$1 + z_0 + z_0^2 = 0 \Rightarrow z_0^2 + z_0 = -1$$

$$2) z^2 + 2z_0 z - z_0 = 0$$

$$\Delta = 4z_0^2 + 4z_0 = 4(z_0^2 + z_0)$$

$$\Delta = -4 = (2i)^2$$

$$z_1 = \frac{2z_0 - 2i}{2} = z_0 - i = -\frac{1}{2} + i\left(\frac{\sqrt{3}}{2} - 1\right)$$

$$z_2 = \frac{2z_0 + 2i}{2} = z_0 + i = -\frac{1}{2} + i\left(\frac{\sqrt{3}}{2}\right)$$

$$4) |z_1|^2 + |z_2|^2 = 4$$

$$\frac{1}{4} + \left(\frac{\sqrt{3}}{2} - 1\right)^2 + \frac{1}{4} + \left(\frac{\sqrt{3}}{2} + 1\right)^2 = 4.$$

Exercise n° 55

$$1) z^2 - 2z \cos\alpha + 1 = 0$$

$$\Delta = (2\cos\alpha)^2$$

$$z_1 = \cos\alpha + i\sin\alpha = e^{i\alpha}$$

$$z_2 = \cos\alpha - i\sin\alpha = e^{-i\alpha}$$

$$2) z^4 - 2z^2 \cos\alpha + 1 = 0$$

$$\left\{ \begin{array}{l} z_1^2 = e^{i\alpha} \\ z_2^2 = e^{-i\alpha} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 2\theta = \alpha + 2k\pi \\ 2\theta' = -\alpha + 2k\pi \end{array} \right.$$

$$z_{1,2} = e^{i(\frac{\alpha}{2} + k\pi)}, k = 0, 1$$

$$z_{2,3} = e^{i(-\frac{\alpha}{2} + k\pi)}, k = 0, 1$$

$$z_{2,4} = e^{i\pi}$$

$$3) M_0\left(e^{i\frac{\alpha}{2}}\right) M_1\left(e^{-\frac{i\alpha}{2}}\right) M_2\left(e^{i\frac{\alpha}{2} + i\pi}\right) H_1\left(e^{i\frac{\alpha}{2} + i\pi}\right)$$

Exercice n° 56

$$1) z^2 - (2^{10} \cos \theta) z + 2^{20} = 0$$

$$\Delta = (2 \cdot 2^{\theta} \cos \theta)^2 - 4 \cdot 2^{20}$$

$$\Delta = 4 \cdot 2^{\theta} (\cos^2 \theta - 1) = (2 \cdot 2^{\theta} i \sin \theta)^2$$

$$z_1 = 2^{\theta} (\cos \theta - i \sin \theta) = 2^{\theta} e^{-i\theta}$$

$$z_2 = 2^{\theta} (\cos \theta + i \sin \theta) = 2^{\theta} e^{i\theta}$$

$$3) z_A = 2^{\theta} e^{-i\theta} \quad z_B = 2^{\theta} e^{i\theta}$$

$$z_0 = 0$$

$$\Rightarrow \frac{z_0 - z_A}{z_0 - z_B} = e^{i\frac{\pi}{3}} \Rightarrow \frac{z_A - z_0}{z_B - z_0} = e^{i\frac{\pi}{3}}$$

$$e^{i\cdot\theta} = e^{i\frac{\pi}{3}} \Rightarrow 2\theta = \frac{\pi}{3} + 2k\pi$$

$$\theta = \frac{\pi}{6} + k\pi / k \in \mathbb{Z}$$

Exercice n° 59

$$4z^3 - 6i\sqrt{3}z^2 - 3(3+i\sqrt{3})z - 4 = 0$$

$$1) z = 6 + 6i\sqrt{3}$$

$$|z| = 12 \Rightarrow \begin{cases} x^2 + y^2 = 12 \\ x^2 - y^2 = 6 \\ 2xy = 6\sqrt{3} \end{cases}$$

$$x = \pm 3 \quad \text{et} \quad y = \pm \sqrt{3}$$

les racines carrees de $6+6i\sqrt{3}$

$$\text{ont } u_1 = -3 - i\sqrt{3} \text{ et } u_2 = 3 + i\sqrt{3}$$

$$2) 2z^2 - (1+3i\sqrt{3})z - 4 = 0$$

$$\Delta = 6 + 6i\sqrt{3} = (3 + i\sqrt{3})^2$$

$$z_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}; \quad z_2 = 1 + i\sqrt{3}$$

3)

$$S = \left\{ -\frac{1}{2}; 1 + i\sqrt{3}; -\frac{1}{2} + i\frac{\sqrt{3}}{2} \right\}$$

Exercice n° 60

$$z^3 - (4+i)z^2 + (7+i)z - 4 = 0$$

$$1) \alpha^3 - 4\alpha^2 - i\alpha^2 + 7\alpha + i\alpha - 4 = 0$$

$$\left\{ \begin{array}{l} \alpha^3 - 4\alpha^2 + 7\alpha - 4 = 0 \\ -\alpha^2 + \alpha = 0 \end{array} \right.$$

$$\alpha = 1$$

	1	-4-i	7+i	-4
1		1	-3-i	4
	1	-3-i	4	0

$$z = 1 \quad \text{ou} \quad z^2 - (3+i)z + 4 = 0$$

$$\Delta = -8 + 6i = (1+3i)^2$$

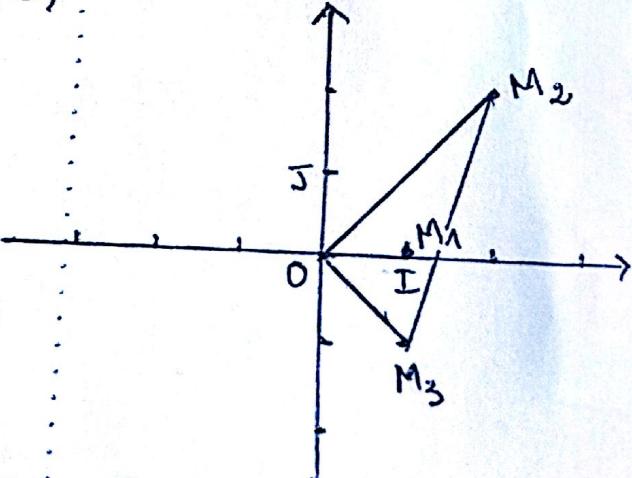
$$S = \{1, 2+2i, 1-i\}$$

$$2) a) z_1 = 1 = \cos 0 + i \sin 0$$

$$z_2 = 2+2i = 2\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

$$z_3 = 1-i = \sqrt{2} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$$

b)



$$\frac{z_{M_3} - z_O}{z_{M_2} - z_O} = \frac{z_{M_3}}{z_{M_2}} = -\frac{1}{2}i \text{ alors}$$

$OM_2 M_3$ est rectangle.

Exercice n° 61

$$P(z) = z^3 - 3z^2 + (3-i)z - 2(1-i)$$

$$1) P(z) = (z-2)(az^2 + bz + c)$$

	1	-3	$3-i$	$-2+2i$
2	=	2	-2	$2-2i$
1		-1	$1-i$	0

$$P(z) = (z-2)(z^2 - z + 1 - i)$$

$$2) P(z) = 0 \Rightarrow z = 2 \text{ ou } z^2 - z + 1 - i = 0$$

$$\Delta = -3 + 4i$$

$$\Delta = (1+2i)^2$$

$$z = 2 \text{ ou } z = -i \text{ ou } z = 1+i$$

Exercice n° 62

$$P(z) = z^3 - (11+2i)z^2 + 2(17+7i)z - 42$$

$$1) \alpha^3 - 11\alpha^2 - 2i\alpha^2 + 34\alpha + 14i\alpha - 42 = 0$$

$$\left\{ \begin{array}{l} \alpha^3 - 11\alpha^2 + 34\alpha - 42 = 0 \\ -2\alpha^2 + 14\alpha = 0 \end{array} \right.$$

$$\alpha = 7$$

$$2) P(z) = (z-7)(az^2 + bz + c)$$

Par Horner ou Identification
ou division Euclidienne on a:

$$P(z) = (z-7)(z^2 - 2(2+i)z + 6)$$

$$3) P(z) = 0$$

$$\Rightarrow z = 7 \text{ ou } z^2 - 2(2+i)z + 6$$

$$\Delta' = -3 + 4i = (1+2i)^2$$

$$z_0 = 7; z_1 = 1-i; z_2 = 3+2i$$

Exercice n° 63

$$P(z) = z^3 - 2(1+2i)z^2 + 7iz + 3(1-3i)$$

$$\begin{aligned} 1) P(\beta) = 0 &\Rightarrow (2\beta^2 - 7\beta + 3) + i(-\beta^3 - 2\beta^2 - 9) = 0 \\ &\left\{ \begin{array}{l} -\beta^3 - 2\beta^2 - 9 = 0 \quad (1) \\ 2\beta^2 - 7\beta + 3 = 0 \quad (2) \end{array} \right. \end{aligned}$$

$$(2) \Rightarrow \beta = 3 \Rightarrow z_0 = 3i$$

$$2) P(z) = (z-3i)(az^2 + bz + c)$$

D'après la méthode de Horner
ou identification on a

$$P(z) = (z-3i)(z^2 - (2+i)z + 3+i)$$

$$3) P(z) = 0$$

$$\Rightarrow z = 3i \text{ ou } z^2 - (2+i)z + 3+i = 0$$

$$\Delta = -9 = (3i)^2$$

$$z = 3i \text{ ou } z = 1-i \text{ ou } z = 1+2i$$

Exercice n° 65

$$P(z) = z^3 - (8+i\sqrt{3})z^2 + (21+5i\sqrt{3})z - 16-6i\sqrt{3} = 0$$

$$1)$$

$$(z^3 - 8z^2 + 21z - 18) + i(z^2 - 5z + 6) = 0$$

$$\left\{ \begin{array}{l} z^3 - 8z^2 + 21z - 18 = 0 \quad (1) \\ z^2 - 5z + 6 = 0 \quad (2) \end{array} \right.$$

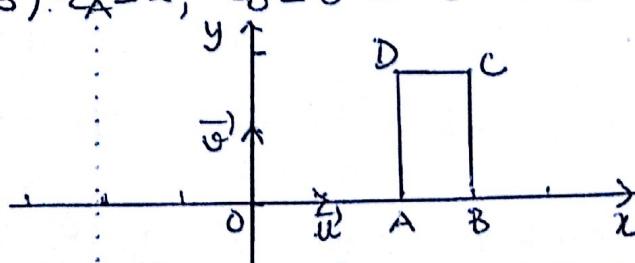
$$(2) \Rightarrow z = 2 \text{ ou } z = 3$$

$$2) P(z) = 0 \Rightarrow (z-2)(z-3)(z-\alpha) = 0$$

$$-6\alpha = -18 - 6i\sqrt{3} \Rightarrow \alpha = 3+i\sqrt{3}$$

$$\alpha = \{2; 3; 3+i\sqrt{3}\}$$

$$3) z_A = 2; z_B = 3 \text{ et } z_C = 3+i\sqrt{3}$$



b) $\frac{z_c - z_b}{z_a - z_b} = -i\sqrt{3}$ alors ABC est un triangle rectangle en B.

4) a) $\vec{AB} = \vec{DC} \Rightarrow z_b - z_a = z_c - z_d$
 $z_d = z_a - z_b + z_c = 2 + i\sqrt{3}$.

b) $\begin{cases} S(A) = A \\ S(C) = D \end{cases} \Rightarrow \begin{cases} z_a = az_a + b \\ z_d = az_c + b \end{cases}$
 $a = \frac{z_d - z_a}{z_c - z_a} = \frac{3 + i\sqrt{3}}{4} = \frac{\sqrt{3}}{4}(\sqrt{3} + i)$

$$b = z_a - az_a = \frac{1}{2} - \frac{i\sqrt{3}}{2}$$

$$\text{Soit } z' = \frac{\sqrt{3}}{4}(\sqrt{3} + i)z + \frac{1}{2} - \frac{i\sqrt{3}}{2}$$

$$S = \left\{ z \in \mathbb{C} : z = \frac{\sqrt{3}}{2}, \alpha = \frac{\pi}{6}; A \left(\begin{smallmatrix} 2 & 0 \\ 0 & 0 \end{smallmatrix} \right) \right\}$$

Exercice n° 66

1) $P(z) = z^3 + (-9 + 4\sqrt{3})z^2 + (43 - 24\sqrt{3})z - 75 + 36\sqrt{3}$

a) $P(3) = 0$

b)

1	$-9 + 4\sqrt{3}$	$43 - 24\sqrt{3}$	$-75 + 36\sqrt{3}$
3	3	$-18 + 12\sqrt{3}$	$75 - 36\sqrt{3}$
1	$-6 + 4\sqrt{3}$	$25 - 12\sqrt{3}$	0

$$P(z) = (z-3)(z^2 + (-6 + 4\sqrt{3})z + 25 - 12\sqrt{3})$$

c) $z = 3$ ou $z^2 + (-6 + 4\sqrt{3})z + 25 - 12\sqrt{3} = 0$
 $\Delta = (4i)^2$

$$S = \{3; 3 - 2\sqrt{3} + 2i; 3 - 2\sqrt{3} - 2i\}$$

2) a) $\frac{z - w}{z - w} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}$ alors $U \setminus \{w\}$ est équilatéral.

Exercice n° 67

$$z^3 - (6 + i\sqrt{3})z^2 + (11 + 4i\sqrt{3})z - 6 - 3i\sqrt{3} = 0$$

$$1) \alpha^3 - 6\alpha^2 - i\alpha^2\sqrt{3} + 11\alpha + 4i\alpha\sqrt{3} - 6 - 3i\sqrt{3} = 0$$

$$\left. \begin{array}{l} \alpha^3 - 6\alpha^2 + 11\alpha - 6 = 0 \quad (1) \\ \alpha^2 - 4\alpha + 3 = 0 \quad (2) \end{array} \right\}$$

$$(2) \Rightarrow \alpha = 1 \text{ ou } \alpha = 3.$$

$$(z-1)(z-3)(z-\alpha) = 0$$

$$-3\alpha = -6 - 3i\sqrt{3}$$

$$\alpha = 2 + i\sqrt{3}$$

$$S = \{1; 3; 2 + i\sqrt{3}\}$$

2) $z_A = 3; z_B = 2 + i\sqrt{3}; z_C = -1$

$z_E = 7$ et $z_G = 11 + 4i\sqrt{3}$

a) $\frac{z_A - z_E}{z_B - z_E} = \frac{3-1}{2+i\sqrt{3}-1} = \frac{1}{2} - i\frac{\sqrt{3}}{2} = e^{-i\frac{\pi}{3}}$

alors IAB est équilatéral.

b) $\frac{z_B - z_G}{z_B - z_E} = \frac{3+i\sqrt{3}}{-3(3+i\sqrt{3})} = -\frac{1}{3}$ alors

B, C, G sont alignés.

3) $\frac{z_F - z_G}{z_G - z_E} = e^{i\frac{\pi}{3}}$ ou $e^{-i\frac{\pi}{3}}$

$$z_F = e^{i\frac{\pi}{3}}(z_G - z_E) + z_G. \text{ ou}$$

$$z_f = e^{-\frac{i\pi}{3}}(z_g - z_e) + z_g.$$

Exercice n° 68

$$P(z) = z^3 - (1-2\sin\alpha)z^2 + (1-2\sin\alpha)z - 1$$

$$1) P(1) = 1 - 1 + 2\sin\alpha + 1 - 2\sin\alpha - 1 = 0$$

$$2) P(z) = (z-1)(z^2 + (2\sin\alpha)z + 1)$$

$$3) z_0 = 1 \text{ ou } \Delta^i = (i\cos\alpha)^2$$

$$z_1 = -\sin\alpha + i\cos\alpha$$

$$z_2 = -\sin\alpha - i\cos\alpha$$

$$z_0 = 1 = e^{i0} \text{ ou } e^{i2\pi}$$

$$z_1 = -\sin\alpha + i\cos\alpha = i(\cos\alpha + i\sin\alpha)$$

$$z_1 = e^{i(\frac{\pi}{2} + \alpha)}$$

$$z_2 = -\sin\alpha - i\cos\alpha = i(\cos\alpha - i\sin\alpha)$$

$$z_2 = e^{i(\frac{\pi}{2} + \alpha)}$$

$$z_2 = e^{i(\frac{\pi}{2} + \alpha)}$$

Exercice n° 69

$$P(x) = x^4 - 6x^3 + 23x^2 - 34x + 26$$

$$1) P(1+i) = -4 + 12 - 12i + 46i - 34 - 34i + 26$$

$$P(1+i) = 0$$

$$2) P(z) = 0 \Rightarrow P(\bar{z}) = 0$$

$$3) z_0 = 1+i \Rightarrow z_1 = \bar{z}_0 = 1-i$$

$$P(z) = (z-1-i)(z-1+i)(z^2 - 4z + 13).$$

$$S = \{1+i, 1-i, 2-3i, 2+3i\}$$

Exercice n° 70

Corrigés

$$P(z) = z^4 - z^3 + z - 1$$

$$1) P(1) = 0$$

$$2) P(z) = (z-1)(z^3 + 1) \text{ avec } Q(z) = z^3 + 1$$

$$3) Q(z) = 0 \Rightarrow Q(-1) = 0$$

$$4) Q(z) = (z+1)(z^2 - z + 1)$$

$$5) P(z) = (z-1)(z+1)(z^2 - z + 1)$$

* Dans $\mathbb{R} \Rightarrow S = \{-1, 1\}$

* Dans $\mathbb{C} \Rightarrow S = \{-1, 1, \frac{1-i\sqrt{3}}{2}, \frac{1+i\sqrt{3}}{2}\}$

Exercice n° 71

$$P(z) = z^4 + (5-2i)z^3 + (8-10i)z^2 + (6-16i)z + 16$$

$$1) P(2i) = P(-3) = 0$$

$$2) P(z) = [z^2 + (3-i)z - 6i] Q(z).$$

$$Q(z) = az^2 + bz + c$$

$$Q(z) = z^2 + 2z + 2.$$

$$3) P(z) = 0 \Rightarrow$$

$$S = \{2i, -3, -1+i, -1-i\}$$

Exercice n° 72

$$f(z) = z^4 + 4iz^2 + 12(1+i)z - 45$$

$$1) f(x) = 0$$

$$x^4 + 12x - 45 = 0$$

$$4x^2 + 12x = 0 \Rightarrow x = -3$$

$$2) f(i\alpha) = 0 \text{ de la même manière}$$

$$\Rightarrow z_1 = 3i$$

$$3) f(z) = (z+3)(z-3i)(az^2 + bz + c)$$

	1	0	4i	12+12i	-45
-3	=	-3	9	-27-12i	45
	1	-3	9+4i	-15	0

	1	-3	9+4i	-15
3i	=	3i	-9-9i	15
	1	-3+3i	-5i	0

$$f(z) = 0 \Rightarrow (z+3)(z-3i)(z^2 + (-3+3i)z - 5) = 0$$

$$\Delta = 2i = (1+i)^2$$

$$S = \{-3; 3i; -2+i; -1+2i\}$$

Exercice n° 73

$$1) P(z_0) = 0 \Rightarrow z_0^4 - 6z_0^3 + 9z_0^2 - 6z_0 + 2 = 0$$

$$P\left(\frac{1}{z_0}\right) = z^2 \left(\frac{1}{z_0}\right)^4 - 6\left(\frac{1}{z_0}\right)^3 + 9\left(\frac{1}{z_0}\right)^2 - 6\left(\frac{1}{z_0}\right) + 2 = 0$$

en réduisant au même dénominateur on a: $\frac{1}{z_0^4} P(z) = 0$

$$\Rightarrow P\left(\frac{1}{z_0}\right) = 0$$

$$P\left(\frac{1}{z_0}\right) = z^4 - 6z^3 + 9z^2 - 6z + 2 = 0$$

$$2) (1+i)^2 = 2i; (1+i)^3 = -2+2i$$

$$(1+i)^4 = -4.$$

$$P(1+i) = 2(-4) - 6(-2+2i) + 9(2i) - 6(1+i) + 2$$

$$P(1+i) = 0$$

$$3) z_0 = 1+i; \bar{z}_0 = 1-i$$

$$\frac{1}{z_0} = \frac{1}{2} - \frac{1}{2}i \quad \frac{1}{\bar{z}_0} = \frac{1}{2} + \frac{1}{2}i$$

$$S = \{1+i; 4-i; \frac{1}{2} - \frac{1}{2}i; \frac{1}{2} + \frac{1}{2}i\}$$

Exercice n° 74

$$1) \Delta = (1-\sqrt{2})^2$$

$$z_1 = \frac{1+\sqrt{2}-1+\sqrt{2}}{2} = \sqrt{2}$$

$$z_2 = \frac{1+\sqrt{2}+1-\sqrt{2}}{2} = 1$$

$$2) z + \frac{1}{z} = 1 \Rightarrow z^2 - z + 1 = 0 \quad (E_1)$$

$$z + \frac{1}{z} = \sqrt{2} \Rightarrow z^2 - \sqrt{2}z + 1 = 0 \quad (E_2)$$

$$(S_1) = \left\{ \frac{1}{2} - \frac{i\sqrt{3}}{2}; \frac{1}{2} + \frac{i\sqrt{3}}{2} \right\}$$

$$(S_2) = \left\{ \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right\}$$

$$3) a) \frac{P(z)}{z^2} = \left(z + \frac{1}{z}\right)^2 - (1+\sqrt{2})\left(z + \frac{1}{z}\right) + \sqrt{2}$$

$$\frac{P(z)}{z^2} = u^2 - (1+\sqrt{2})u + \sqrt{2}.$$

$$b) \frac{P(z)}{z^2} = 0 \Rightarrow P(z) = 0$$

$$u = 1 \text{ et } u = \sqrt{2}$$

$$P(z) = 0 \Rightarrow S = (S_1) \cup (S_2).$$

Exercice n° 75

$$z^4 + 2z^3 + 2z^2 - 2z + 1 = 0$$

$$2) z^2 \left[z^2 + 2z + 2 - \frac{2}{z} + \frac{1}{z^2} \right]$$

$$z^2 \left[\left(z^2 + \frac{1}{z^2}\right) + 2\left(z - \frac{1}{z}\right) + 2 \right]$$

$$z^2 \left[\left(z - \frac{1}{z}\right)^2 + 2\left(z - \frac{1}{z}\right) + 4 \right]$$

$$b) z^2 + 2z + 4 = 0$$

$$z_1 = -1 - i\sqrt{3} \quad z_2 = -1 + i\sqrt{3}$$

$$\begin{cases} z - \frac{1}{z} = -1 - i\sqrt{3} \Rightarrow z^2 + (1+i\sqrt{3})z - 1 = 0 \\ z - \frac{1}{z} = -1 + i\sqrt{3} \Rightarrow z^2 + (1-i\sqrt{3})z - 1 = 0 \end{cases}$$

Exercice n° 76

$$\begin{aligned} 1) z^4 + az^2 + b + 12i &= 0 \\ 2) (\sqrt{2}(1+i))^4 + 2a(1+i)^2 + b + 12i &= 0 \\ -16 + 4ai + b + 12i &= 0 \\ 4ai = -12i &\Rightarrow \begin{cases} a = -3 \\ b = 16 \end{cases} \end{aligned}$$

$$\begin{aligned} 3) z^4 - 3z^2 + 16 + 12i &= 0 \\ x = z^2 \Rightarrow x^2 - 3x + 16 + 12i &= 0 \\ \Delta = -55 - 48i & \\ \Delta = (3 - 8i)^2 & \\ x = 3 - 4i &\Rightarrow \begin{cases} z^2 = 3 - 4i \\ x = 4i \Rightarrow z^2 = 4i \end{cases} \end{aligned}$$

Exercice n° 77

$$\begin{aligned} 1) p(-1+i) &= p(1-i) = p(3+i) = p(1+3i) = 0 \\ 2) \text{t. } z' &= \frac{\sqrt{2}}{2} z + \frac{\sqrt{2}}{2} i \\ 2) z_{S2} \left(1 - \frac{\sqrt{2}}{2}\right) &= \frac{\sqrt{2}}{2} + i \\ z_{S2} &= \frac{\sqrt{2} + 2i}{2 - \sqrt{2}} = (\sqrt{2} + 1) + i(2 + \sqrt{2}) \end{aligned}$$

5) h est une homothétie de rapport $k_c = \frac{\sqrt{2}}{2}$ et de centre $S2$.

$$6) r = \{S2\}, \alpha = 15^\circ = \frac{\pi}{12}$$

$S = h$ ou est une similitude plane directe.

$$S = j \cdot k_c = \frac{\sqrt{2}}{2}; \alpha = \frac{\pi}{12}; z_{S2} \left(\frac{\sqrt{2} + 1}{2 + \sqrt{2}} \right)$$

Exercice n° 78

$$\begin{aligned} 1) z^4 + (8 - 4i)z^2 + 12 + 16i &= 0 \\ x^2 + (8 - 4i)x + 12 + 16i &= 0 \\ \Delta = -128i &= (8 - 8i)^2 = (-8 + 8i)^2 \\ x_1 = -8 + 6i &\Rightarrow \begin{cases} z^2 = -8 + 6i \\ x_2 = -2i \end{cases} \\ x_2 = -2i &\Rightarrow \begin{cases} z^2 = -2i \\ z^2 = -8 + 6i \end{cases} \\ z^2 = (1+3i)^2 &\Rightarrow z_1 = 1+3i \quad z_2 = -1-3i \\ z^2 = (1-i)^2 &\Rightarrow z_3 = -1+i \quad z_4 = 1-i \\ 2) z_A = -1-3i; z_B = 1-i; \\ z_C = -1+i \quad z_D = 1+3i & \end{aligned}$$

Exercice n° 79

$$\begin{aligned} 1) (z-1)^4 &= z^4 - 4z^3 + 6z^2 - 4z - 15 \\ 2) p(z) &= (z-1)^4 - 16 \\ a) &= [(z-1)^2 - 4][(z-1)^2 + 4] \\ b) p(z) &= [(z-1)^2 - 2^2][(z-1) + (2i)^2] \\ (z+1)(z-3)(z-1-2i)(z-1+2i). \\ 3) z_A = 3; z_B = 1-2i \quad z_D = -1 \\ z_C = 1+2i & \\ \frac{z_C - z_A}{z_B - z_A} &= -i \text{ alors } ABC \text{ est un triangle rectangle isocèle en } A. \end{aligned}$$

i) $f(A) = A$
ii) $f(C) = B \Rightarrow a = \frac{z_B - z_A}{z_C - z_A} = i$

$$z_A = a z_A + b \Rightarrow b = 3 - 3i$$

$$\therefore z' = i z + 3 - 3i$$

ii) $\begin{cases} x' = -y + 3 \\ y' = x - 3 \end{cases} \Rightarrow \begin{cases} y = 3 - x' \\ x = y' + 3 \end{cases}$

$$y = x \Rightarrow y' + 3 = 3 - x' \Rightarrow y' = -x'$$

l'image par f de la première bissectrice est la droite (D) d'équation $y = -x$.

Exercice n° 82

i) $z_C - z_A = e^{i\frac{\pi}{3}} (z_B - z_A)$

$$z_C = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) (5 + 2i - 2 + i) + 2 - i$$

$$z_C = \frac{7 - 3\sqrt{3}}{2} + i\left(\frac{1 + 3\sqrt{3}}{2}\right)$$

ii) $z_I = \frac{z_A + z_B}{2}$

$$z_D - z_B = 2(z_A - z_B)$$

$$z_D = 1 - 4i$$

$$z_I = \frac{7 + i}{2}$$

iii) a) $z' - z_A = e^{i\frac{2\pi}{3}} (z - z_A)$

$$\text{hence } z' - z_A = -\frac{1}{2}(z - z_A)$$

b) $\text{hor} = \text{h}(r)$

$$\text{hor} = -\frac{1}{2}\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(z - z_A) + z_A$$

$$\text{hor} : z' = \left(\frac{1}{4} - i\frac{\sqrt{3}}{4}\right)(z_C - z_A) + z_A$$

$$\text{hor}(C) = I$$

$$z_I = \left(\frac{1}{4} - i\frac{\sqrt{3}}{4}\right)(z_C - z_A) + z_A$$

$$z_I = \left(\frac{1}{4} - i\frac{\sqrt{3}}{4}\right)(5 + 2i - 2 + i) + 2 - i$$

$$z_I = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(3 + 3i) + 2 - i$$

$$z_I = \frac{7 - 3\sqrt{3}}{2} + i\left(\frac{1 + 3\sqrt{3}}{2}\right)$$

Exercice n° 83

$$z_A = -2 + 2i ; z_B = -3 - 6i ; z_C = 1$$

1) $\frac{z_B - z_C}{z_A - z_C} = \frac{-3 - 6i - 1}{-2 + 2i - 1} = 2i$ alors

ABC est un triangle rectangle en C

2)

a) $z' - z_B = e^{i\frac{\pi}{2}} (z - z_B)$

$$z' = i(z - z_B) + z_B$$

$$z' = iz - i z_B + z_B$$

$$z' = iz - 9 - 3i$$

b) $z_A' = iz_A - 9 - 3i = -11 - 5i$

c) $z_S = \frac{z_A + z_A'}{2} = -\frac{13}{2} - \frac{3}{2}i$

d) ABC est un triangle rectangle en C donc le centre de son cercle circonscrit S2 est le milieu du segment [AB] donc $z_{S2} = \frac{z_A + z_B}{2}$

$$z_{S2} = -\frac{5}{2} - 2i \text{ et } r_{S2} = \frac{\sqrt{65}}{2}$$

$$z_C' - z_A = i(z_C - z_A)$$

$$z_B' - z_C = i(z_B - z_C)$$

$$z_Q = \frac{z_C + z_C'}{2} \text{ et } z_P = \frac{z_B + z_B'}{2}$$

$$a) \frac{s-q}{p-a} = \frac{-\frac{13}{2} - \frac{3}{2}i - \frac{1}{2} - \frac{5}{2}i}{2-5i + 2-2i} = \frac{-7-4i}{4-7i}$$

$$b) \frac{z_P - z_S}{z_Q - z_B} = -i \text{ alors (PS) et (BQ)}$$

sont perpendiculaires. On montre de même que les droites (CS) et (PQ) sont perpendiculaires, les droites (AP), (BQ) et (CS) sont les hauteurs du triangle PQS donc sont concourantes.

Exercice n° 84

$$f(z) = \frac{iz}{z+i}$$

$$1) f(z_0) = \frac{\sqrt{3}}{2} + \frac{1}{2}i \Rightarrow 2iz_0 = (\sqrt{3}+i)(z_0+i)$$

$$z_0(-\sqrt{3}+i) = -1+i\sqrt{3} \Rightarrow z_0 = \frac{-1+i\sqrt{3}}{-\sqrt{3}+i}$$

$$z_0 = \frac{\sqrt{3}}{2} - \frac{1}{2}i \Rightarrow B\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

$$2) |z+i|=r \text{ et } \arg(z+i)=\alpha$$

$$|f(z)-i|=|\frac{1}{z+i}|=\frac{1}{r}$$

$$\arg(f(z)-i) = -\arg(z+i) = -\alpha$$

$$\therefore z = \frac{1}{r}(\cos(-\alpha) + i \sin(-\alpha))$$

$$3) |f(z)-i|=1 \Rightarrow \left|\frac{1}{z+i}\right|=1$$

$$\Rightarrow |z+i|=1 \Rightarrow |z_M - z_A|=1$$

AM = 1 (f) est un cercle de centre A et de rayon 1.

b) $\sqrt{3}x_B - y_B - 3 = 0$ alors (T) est tangente à (f) en B.

Exercice n° 85

$$(E): z^2 - (1+i(2+\sqrt{3}))z - 2(\sqrt{3}-i) = 0$$

$$1) (2i)^2 - (1+i(2+\sqrt{3}))(2i) - 2(\sqrt{3}-i) = 0$$

$$b) z_1 + z_2 = 1 + 2i + i\sqrt{3}$$

$$\text{or: } z_1 = 2i \Rightarrow z_2 = 1 + i\sqrt{3}$$

$$2) a) z_A = 2e^{i\frac{\pi}{3}} \text{ et } z_B = 2e^{i\frac{\pi}{2}}$$

$$b) OA = |z_A| = OB = |z_B| = 2$$

$$c) \frac{z_A + z_B}{2} = \frac{1+i\sqrt{3}+2i}{2} = \frac{1}{2} + i\left(\frac{\sqrt{3}+2}{2}\right)$$

$$\text{d'où } z_I = \frac{z_A + z_B}{2}$$

3) a) le triangle AOB est isocèle en O puisque les points A et B sont sur le cercle (f). I milieu du côté [AB] d'où (OI) est la bissectrice de l'angle AOB.

$$b) (\vec{OA}, \vec{OB}) = (\vec{OA}, \vec{u}) + (\vec{u}, \vec{OB})$$

$$(\vec{OA}, \vec{OB}) = -\frac{\pi}{3} + \frac{\pi}{2} + 2k\pi \quad (k \in \mathbb{Z})$$

$$c) (\vec{u}, \vec{OI}) = (\vec{u}, \vec{OA}) + (\vec{OA}, \vec{OI}) + 2k\pi$$

$$= \frac{\pi}{3} + \frac{\pi}{12} = \frac{5\pi}{12} + 2k\pi$$

car (OI) est la bissectrice de AOB.

$$d) |z_I| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}+2}{2}\right)^2} = \sqrt{\frac{8+4\sqrt{3}}{4}}$$

$$|z_I| = \sqrt{2+\sqrt{3}}$$

$$z_1 = \sqrt{2+\sqrt{3}} e^{i\frac{5\pi}{12}}$$

$$4) \quad \left| \cos \frac{5\pi}{12} \right| = \frac{1}{2\sqrt{2+\sqrt{3}}}$$

$$\sin \frac{5\pi}{12} = \frac{\sqrt{3}+2}{2\sqrt{2+\sqrt{3}}} = \frac{\sqrt{2+\sqrt{3}}}{2}$$

Exercice n° 86

$$1) \quad a) \quad z^2 - 2z + 4 = 0$$

$$\Delta = (2\sqrt{3}i)^2$$

$$z_1 = 1 - i\sqrt{3} \quad z_2 = 1 + i\sqrt{3}$$

$$3) \quad N \in (\Gamma) \Rightarrow |z_N| = 2$$

$$\text{de plus } \arg z_N \equiv (\vec{u}; \vec{ON}) [2\pi]$$

$$\arg z_N = (\vec{OM}; \vec{ON}) + (\vec{u}; \vec{OM}) [2\pi]$$

$$\arg z_N = \theta + \frac{\pi}{3} [2\pi]$$

$$z_N = 2 e^{i(\theta + \frac{\pi}{3})}$$

$$4) \quad a) \quad z^i = e^{i\frac{\pi}{3}} (z - z_A) + z_A$$

$$z^i = e^{i\frac{\pi}{3}} z - 2e^{i\frac{\pi}{3}} + z_A$$

$$b) \quad z_F = \frac{z_B + z_M}{2} = e^{i\theta} + e^{i\frac{\pi}{3}}$$

$$z_K = \frac{z_C + z_M}{2} = e^{i(\theta + \frac{\pi}{3})} + e^{i\frac{\pi}{3}}$$

en remplaçant z_F dans l'expression de r on obtient $\Gamma(F) = K$.

$$c) \quad \text{puisque } (\Gamma) = K \Rightarrow \left\{ \begin{array}{l} AF = AK \\ (\vec{AF}; \vec{AK}) = \frac{\pi}{3} \end{array} \right. \quad (1)$$

il résulte que le triangle AFK est équilatéral.

$$5) \quad a) \quad AF^2 = \left| e^{i\theta} + e^{i\frac{\pi}{3}} - 2 \right|^2$$

$$\left(e^{i\theta} + e^{i\frac{\pi}{3}} - 2 \right) \left(e^{i\theta} + e^{i\frac{\pi}{3}} - 2 \right)$$

$$6 + 2 \cos(\theta - \frac{\pi}{3}) - 4 \cos(\frac{\pi}{3}) - 4 \cos \theta =$$

$$4 - (3 \cos \theta - \sqrt{3} \sin \theta) = 4 - 2\sqrt{3} \cos(\theta + \frac{\pi}{6})$$

b) AF^2 est maximale si et seulement

$$\text{si } \left\{ \begin{array}{l} \cos(\theta + \frac{\pi}{6}) = -1 \\ \theta \in]-\pi; \pi[\end{array} \right. \Rightarrow \theta = \frac{5\pi}{6}$$

Exercice n° 87

$$1) \quad a) \quad |a| = \sqrt{3} \Rightarrow a \in (\beta)$$

$$a) \Delta = 12(-1 + 2i\sqrt{2}) = 12a^2$$

$$b) \sqrt{\Delta} = 2\sqrt{3} a = 2\sqrt{3} (1 + i\sqrt{2})$$

$$3) \quad a) \quad z_K = \frac{z_1 + z_2}{2} = i\sqrt{3}$$

$$b) \quad \frac{z_2 - z_1}{a} = \frac{2(\sqrt{3} + i\sqrt{6})}{1 + i\sqrt{2}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$$

$$c) \quad \frac{z_{M_2} - z_{M_1}}{z_A - z_D} = \frac{\vec{M_1 M_2}}{\vec{z_A z_D}} = 2\sqrt{3} \text{ OR}$$

$$d) \quad M_1 M_2 = |z_2 - z_1| = |2\sqrt{3} + 2i\sqrt{6}| = 6$$

Exercice n° 88

$$1) -i\alpha^3 + (2+\sqrt{2})(1+i)\alpha^2 - 4(1+\sqrt{2})\alpha + 4\sqrt{2}(1-i) = 0$$

$$-i\alpha^3 + (2+\sqrt{2})\alpha^2 + i(2+\sqrt{2})\alpha^2 - 4(1+\sqrt{2})\alpha + 4\sqrt{2} - 4i\alpha = 0$$

$$\left. \begin{array}{l} -i\alpha^3 + (2+\sqrt{2})\alpha^2 - 4\sqrt{2} = 0 \\ (2+\sqrt{2})\alpha^2 - 4(1+\sqrt{2})\alpha + 4\sqrt{2} = 0 \end{array} \right\} (1)$$

$$\left. \begin{array}{l} -i\alpha^3 + (2+\sqrt{2})\alpha^2 - 4\sqrt{2} = 0 \\ (2+\sqrt{2})\alpha^2 - 4(1+\sqrt{2})\alpha + 4\sqrt{2} = 0 \end{array} \right\} (2)$$

$$(2) \quad \Delta = 4 \Rightarrow \alpha = 2$$

$$z_0 = 2i; z_1 = 2$$

$$2) \quad (z - z_1)(z - 2)(z - a) = (E)$$

$$-4ia = 4\sqrt{2}(1-i) \Rightarrow a = \sqrt{2} + i\sqrt{2}$$

$S = \{\sqrt{2}, 2i; \sqrt{2} + i\sqrt{2}\}$

$$4) \beta = 2e^{i\frac{\pi}{4}}; \beta^4 = 2^4 e^{i\pi} = -16$$

$$5) z \cdot z' = az + b$$

$$S(A) = C \text{ et } S(C) = B$$

$$\Rightarrow (S): z' = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)z.$$

$$a) \beta = 1; \alpha = \frac{\pi}{4}, S(0)$$

(S) est donc une rotation.

$$b) z' + iy' = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)(x+iy).$$

$$\begin{cases} x' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y \\ y' = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y. \end{cases}$$

Exercice n° 8

$$1) (z-i)^3 - (iz+2\sqrt{3})(-i)^2 + (2ia\sqrt{3}+4)(-2)^4 - 4ia = 0$$

$$a = -2$$

$$2) z^3 - (2i - 2\sqrt{3})z^2 + (4 - 4i\sqrt{3})z + 8i = p(z)(z - \sqrt{3} - i)$$

$$\Rightarrow p(z) = z^2 + (-\sqrt{3} + 3i)z - 2 - 2i\sqrt{3}$$

$$3) z_0 = \sqrt{3} + i \quad D = (\sqrt{3} + i)^2$$

$$S = \{-2i; \sqrt{3} + i; \sqrt{3} - i\}$$

$$b) T = S(0,5) M \Rightarrow z_T = -\sqrt{3} + i$$

$$\frac{z_T - z_M}{z_{T_2} - z_M} = -i\sqrt{3} \quad \text{le triangle est rectangle en } M$$

$$\frac{z_T - z_M}{z_{T_2} - z_M} \cdot \frac{z_T - z_N}{z_{T_2} - z_N} = -1.$$

Exercice n° 90

$$1) z_1 = 3 - 4i \quad z_2 = 8i$$

$$|z_1| = 5$$

$$\begin{cases} x^2 + y^2 = 25 \\ x^2 - y^2 = 3 \\ 2xy = -4 \end{cases}$$

$$\begin{cases} x^2 + y^2 = 8 \\ x^2 - y^2 = 0 \\ 2xy = 8 \end{cases}$$

$$x = \pm 2, y = \pm 1$$

$$z_1 = 2 - i, z_2 = -2 + i$$

$$x = \pm 2, y = \pm 2$$

$$z_1 = 2 + 2i, z_2 = -2 - 2i$$

$$2) z^4 - (3+4i)z^2 + 32 + 24i = 0$$

$$x^2 - (3+4i)x + 32 + 24i = 0$$

$$\Delta = (3-12i)^2$$

$$\begin{cases} x_1 = 3 - 4i \\ x_2 = 8i \end{cases} \Rightarrow \begin{cases} z_1^2 = 3 - 4i \\ z_2^2 = 8i \end{cases}$$

On déduit:

$$S = \{2 - i, -2 + i, 2 + 2i, -2 - 2i\}$$

$$3) \frac{z_A - z_B}{z_C - z_D} = -1 \Rightarrow \vec{AB} = \vec{DC} \text{ alors}$$

ABCD est un parallélogramme.

$$4) z' - z_A = e^{i\frac{\pi}{4}}(z - z_A)$$

$$z_B - z_A = e^{i\frac{3\pi}{4}}(z_E - z_A)$$

$$z_E = e^{i\frac{\pi}{4}}(z_B - z_A) + z_A$$

Exercice 91

$$1) a^2 - (i + i\sqrt{3})a + i\sqrt{3} = 0$$

$$a^2 - a = 0$$

$$1 - \sqrt{3}a + \sqrt{3} = 0 \Rightarrow a = 1$$

$$2) z^2 - (1 + \sqrt{3})z + i\sqrt{3} = 0$$

$$(z-1)(z-a) = 0$$

$$a = i\sqrt{3} \Rightarrow S = \{1, i\sqrt{3}\}$$

$$3) z^3 - i\sqrt{3}z^2 - z + i\sqrt{3} = (z+1)(az^2 + bz + c)$$

	1	$-i\sqrt{3}$	-1	$i\sqrt{3}$
-1		-1	$1+i\sqrt{3}$	$-i\sqrt{3}$
1		$-1-i\sqrt{3}$	$+i\sqrt{3}$	0

$$a \quad b \quad c$$

$$S = \{-1, 1, i\sqrt{3}\}$$

$$4) S(A) = B \Rightarrow z_B = az_A + b$$

$$S(B) = C \Rightarrow z_C = az_B + b$$

$$a = \frac{z_B - z_C}{z_A - z_B} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

$$b = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$(S): z' = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z - \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$|a| = 1$ alors S est une rotation d'un angle $\frac{4\pi}{3}$ et de centre $z_{S2} = \frac{b}{1-a}$.

$$z_{S2} = -i\frac{\sqrt{3}}{6}$$

$$\Rightarrow MA^2 + MB^2 - 3MC^2 = 0$$

$$S2 = \begin{bmatrix} A & B & C \\ 1 & 1 & -3 \end{bmatrix}$$

Exercice n° 92

$$P(z) = z^3 + z^2 + (-5+4i)z - 21 - 12i$$

$$1) P(z) = (z-3)(az^2 + bz + c)$$

En utilisant la méthode de Horner on a:

$$P(z) = (z-3)(z^2 + 4z + 7 + 4i)$$

$$2) P(z) = 0 \Rightarrow z = 3 \quad \text{ou} \quad \Delta = (-2+4i)^2$$

$$S = \{3, -3+2i, -1-2i\}$$

$$3) S(A) = A \Rightarrow z_A = az_A + b$$

$$S(B) = C \Rightarrow z_C = az_B + b$$

$$a = \frac{z_A - z_C}{z_A - z_B} = 1 - i \quad \text{et} \quad b = 3i$$

$$(S): z' = (1-i)z + 3i$$

Exercice n° 93

$$P(z) = z^3 - 3z^2 + (3+3i)z - 6 + 2i$$

$$1) P(-i) = 0$$

$$P(z) = (z+i)(z^2 - (3+i)z + 2 + 6i)$$

$$2) z = -i \quad \text{ou} \quad \Delta = -18i = (3-3i)^2$$

$$3) S = \{-i, 2i, 3-i\}$$

$$c) \frac{z_C - z_A}{z_B - z_A} = -i = e^{-i\frac{\pi}{2}} \quad \text{alors}$$

ABC est un triangle rectangle et isocèle en A.

$$3) \overrightarrow{AB} = \overrightarrow{DC} \Rightarrow z_B - z_A = z_C - z_D$$

$$z_D = 3.$$

ABCD est un parallélogramme.

Exercice n° 94.

$$P(z) = z^3 - (2+i\sqrt{2})z^2 + 2(i\sqrt{2}+1)z - 2i\sqrt{2}$$

$$1) -i\beta^3 + i\sqrt{2}\beta^2 + 2i\beta - 2i\sqrt{2} + 2\beta^2 - 2i\sqrt{2}\beta = 0$$

$$\left\{ \begin{array}{l} -\beta^3 + \sqrt{2}\beta^2 + 2\beta - 2i\sqrt{2} + 2\beta^2 - 2i\sqrt{2}\beta = 0 \\ 2\beta^2 - 2i\sqrt{2}\beta = 0 \end{array} \right.$$

$$\beta = \sqrt{2} \Rightarrow z_0 = i\sqrt{2}$$

2)

	1	$-2-i\sqrt{2}$	$2+2i\sqrt{2}$	$-2i\sqrt{2}$
$i\sqrt{2}$		$i\sqrt{2}$	$-2i\sqrt{2}$	$2i\sqrt{2}$
1	-2	2	0	

$a \quad b \quad c$

$$3) P(z) = 0 \Rightarrow z = i\sqrt{2}$$

$$z^2 - 2z + 2 = 0$$

$$\Delta = (2i)^2$$

$$S = \{i\sqrt{2}, 1-i, 1+i\}$$

$$B/ 1) z_A = 1+i; z_B = 1-i; z_J = i\sqrt{2}$$

$$z_K = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

$$2) z_K = \frac{z_L + z_J}{2} \quad z_L = 2z_K - z_J \\ \Rightarrow z_L = \sqrt{2}$$

$$3) \frac{z_J - z_A}{z_B - z_A} : \frac{z_J - z_L}{z_B - z_L} = \frac{2\sqrt{2}}{2} \in \mathbb{R}$$

alors A, B, J et K sont sur un même cercle.

$$4) a) z_0 = -1+i; r(0) = 0 \\ r(J) = D.$$

$$z' = az \Rightarrow a = \frac{z_0}{z_J} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

$$r: z' = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)z.$$

$$b) z_C = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)z_L = 1+i$$

Exercice n° 96

$$I) z' = (1-i\sqrt{3})z + i\sqrt{3}$$

a) $a = 1-i\sqrt{3}$ et $|a| = 2$ alors
c'est une similitude plane

directe.

$$2) f = \{k=2, \alpha = -\frac{\pi}{3}; z_{S2} = 1\}$$

$$3) z_A' = (1-i\sqrt{3})z_A + i\sqrt{3} \\ = (1-i\sqrt{3})(-1+i) + i\sqrt{3} \\ z_A' = (\sqrt{3}-1) + i(1+2\sqrt{3}).$$

$$B/ z' = (1-i)z + 2.$$

1) S est une similitude plane directe car $|1-i| = \sqrt{2}$.

$$S = \{\alpha = -\frac{\pi}{4}; k = \sqrt{2}; z_{S2}' = -2i\}$$

2) $|z| = 3 \Rightarrow OM = 3$; (E) est un cercle de centre O et de rayon 3.

$$3) |(1-i)z + 2| = 3$$

$$|(1-i)||z + \frac{2}{1-i}| = 3$$

$$\sqrt{2} |z + (1+i)| = 3$$

$$|z_M - z_{0'}| = \frac{3\sqrt{2}}{2} \text{ avec} \\ z_{0'} = -1-i$$

$O'M = \frac{3\sqrt{2}}{2}$ alors (E') est un cercle de centre O' et de rayon $r' = \frac{3\sqrt{2}}{2}$.

Exercice n° 97

$$z^3 + (-8+i)z^2 + (17-8i)z + 17i = 0$$

$$1) z_0 = -i; z_1 = 4+i; z_2 = 4-i$$

$$3) z_{S2} = 2$$

$$a) \Gamma(A) = S \Rightarrow z_S - z_{S2} = e^{i\frac{\pi}{2}}(z_A - z_{S2}) \\ z_S = 1+2i$$

$$b) \frac{z_A - z_C}{z_B - z_C} = \frac{z_A - z_S}{z_B - z_S} = \frac{4+2i}{4} \cdot \frac{3-i}{3+i}$$

$$\frac{z_A - z_C}{z_B - z_C} : \frac{z_A - z_S}{z_B - z_S} = \frac{3}{2} \text{ alors } A, B, C$$

et S sont sur un même cercle de rayon $r = \sqrt{5}$ et de centre S_2 .

$$1). \quad z' = \frac{iz + 10 - 2i}{z - 2}$$

$$2) \quad z_A' = \frac{iz_A + 10 - 2i}{z_A - 2} = 4 - i$$

$$z_B' = \frac{iz_B + 10 - 2i}{z_B - 2} = 4 + 3i$$

$$z_C' = \frac{iz_C + 10 - 2i}{z_C - 2} = -4 + 3i$$

$$3) \quad A'P = |i - 4 + i| = \sqrt{20}$$

$$B'P = |i - 4 - 3i| = \sqrt{20}$$

$$C'P = |i + 4 - 3i| = \sqrt{20}$$

alors A', B' et $C' \in (\mathcal{C})$ de rayon

$$r = 2\sqrt{5}$$

$$4) \quad |z' - i| = 2\sqrt{5}$$

$$\left| \frac{iz + 10 - 2i - i(z - 2)}{z - 2} \right| = \left| \frac{10}{z - 2} \right|$$

$$5) \quad |z' - i| = 2\sqrt{5}$$

$$|z_M - z_P| = 2\sqrt{5} \Rightarrow PM' = 2\sqrt{5}$$

Exercice n° 98

$$1) \quad P(z) = z^3 - 4z^2 + 6z - 4$$

$$P(2) = 0 \Rightarrow P(z) = (z - 2)(az^2 + bz + c)$$

en utilisant Horner on a :

$$a = 1, \quad b = -2 \quad \text{et} \quad c = 2$$

$$S = \{2, 2; 1 - i; 1 + i\}$$

$$2) \quad z_A = 2, \quad z_B = 1 - i \quad \text{et} \quad z_C = 1 + i$$

$$b) \quad \frac{z_C - z_A}{z_B - z_A} = -i$$

$$3) \quad r(A) = A \quad \text{et} \quad r(B) = C$$

$$a) \quad r: \quad z' - z_A = -i(z - z_A)$$

$$\alpha = -\frac{\pi}{2}$$

$$r(C) = D \Rightarrow z_D - z_A = -i(z_C - z_A)$$

$$\Rightarrow z_D = 3 - i$$

$$b) \quad f' = (I' = r(I); \quad r' = \sqrt{2})$$

$$z_I' = -i(z_I - z_A) + z_A$$

$$4) \quad a) \quad h: \quad z' - z_B = -3(z - z_B)$$

$$h: \quad z' = -3z + 4 - 4i$$

$$b) \quad x' + iy' = -3(x + iy) + 4 - 4i$$

$$\left\{ \begin{array}{l} x' = -3x + 4 \\ y' = -3y - 4 \end{array} \right.$$

$$x = -\frac{x' + 4}{3} \quad \text{et} \quad y = -\frac{y' - 4}{3}$$

$$-\frac{x' + 4}{3} + \frac{y' - 4}{3} + 1 = 0$$

L'image $x - y + 1 = 0$ par h est $-x + y + 1 = 0$.

Exercice n° 99

$$P(z) = z^3 - (6 + 6i)z^2 + 21iz + 15 - 5i$$

$$2) \quad P(z) = (z - i)(z^2 - (6 + 5i)z + 5 + 5i)$$

$$3) \quad z = i \quad \text{ou} \quad \Delta = (3i)^2$$

$$S = \{i; 3 + i; 3 + 4i\}$$

$$\text{c)} \frac{z_3 - z_2}{z_1 - z_2} = \frac{3+4i - 3-i}{i - 3-i} = -i$$

alors AB c'est un triangle rectangle et isocèle en B .

$$\text{d)} \frac{z_c - z_B}{z_A - z_B} = -i$$

$$\Rightarrow z_c - z_B = -i(z_A - z_B)$$

$$z_c - z_B = -i^2(z - z_B)$$

$$\alpha = -\frac{\pi}{2}.$$

Exercice n° 100

$$P(z) = z^4 - 4(1+i)z^3 + 12iz^2 + 8(1-i)z - 20$$

$$1) f(z) = (z^2 + 2i)(z^2 + az + b)$$

$$z^4 + az^3 + bz^2 + 2iz^2 + 2iaz + 2ib.$$

$$a = -4(1+i) \quad 2ib = -20 \Rightarrow b = 10i$$

$$P(z) = (z^2 + 2i)(z^2 - 4(1+i)z + 10i).$$

$$2) \begin{cases} z^2 + 2i = 0 \\ z^2 - 4(1+i)z + 10i = 0 \end{cases} \Rightarrow z^2 = -2i$$

$$\Delta = (4+4i)^2 - 40i = -8i \quad (2-2i)^2$$

$$3) z^2 = -2i \Rightarrow z_0 = 1-i \text{ ou } z = -1+i$$

$$\begin{cases} z_2 = 3+i \\ z_3 = 1+3i \end{cases}$$

$$4) z_A = 1-i, z_B = -1+i, z_C = 3+i$$

$$z_D = 1+3i$$

$$\frac{z_A - z_B}{z_C - z_B} \cdot \frac{z_A - z_D}{z_C - z_D} = -1 \in \mathbb{R}^*$$

Exercice n° 101

$$f(z) = z^3 + 9iz^2 + 2(6i-11)z - 3(4i+12)$$

$$1) f(z_1) = 0$$

$$z_1^3 + 9iz_1^2 + 12iz_1 - 22z_1 - 12i - 36 = 0$$

$$\begin{cases} z_1^3 - 22z_1 - 36 = 0 \\ 9z_1^2 + 12z_1 - 12 = 0 \end{cases}$$

$$z_1 = -2$$

$$2) f(z) = (z+2)(z^2 + (-2+9i)z - 18-6i)$$

$$\text{avec } P(z) = z^2 + (-2+9i)z - 18-6i$$

$$3) P(i\beta) = 0 \Rightarrow \beta^2 - 2i\beta - 9\beta - 18 - 6i = 0$$

$$\begin{cases} -\beta^2 - 9\beta - 18 = 0 \\ -2\beta - 6 = 0 \end{cases}$$

$$\Rightarrow z_2 = -3i$$

$$4) f(z) = 0$$

$$\Rightarrow (z+2)(z+3i)(z - z_3) = 0$$

$$-6iz_3 = -18-6i$$

$$z_3 = 2-6i$$

$$S = \{-2, -3i, 2-6i\}$$

$$5) \frac{z_B - z_A}{z_C - z_A} = \frac{1}{2} \text{ alors } A, B \text{ et } C$$

sont alignés.

Exercice n° 102

$$z^3 + 5z^2 + 11z + 15 = 0$$

$$1) z_0 = -3$$

$$2) z^3 + 5z^2 + 11z + 15 = (z+3)(z^2 + 2z + 5)$$

$$S = \{-3, -1+2i, -1-2i\}$$

$$3) \text{a)} \frac{b+3}{d+3} = \frac{z_B - z_A}{z_D - z_A} = i$$

b) ABD est un triangle rectangle et isocèle en A .

$$\begin{aligned} c) \quad z_B - z_A &= z_C - z_D \\ \Rightarrow z_C &= z_B - z_A + z_D. \end{aligned}$$

Exercice n° 103

$$z_0 = 0; z_0' = 3i; z_I = i; z_I' = 1+i$$

$$\begin{aligned} \text{a) } S(O) = O' &\Rightarrow \begin{cases} z_0' = az_0 + b \\ S(I) = I' \end{cases} \\ S(I) = I' &\Rightarrow \begin{cases} z_0' = az_I + b \\ z_I' = az_I + b \end{cases} \\ b = 3i \quad a = \frac{1+i}{i} &= 1-i \end{aligned}$$

$$\text{S: } z' = (1-i)z + 3i$$

$$\text{b) } x' + iy' = (1-i)(x+iy)$$

$$\begin{cases} x' = x+y \\ y' = -x+y+3 \end{cases}$$

$$\begin{aligned} \text{3) (E): } |z-2-2i| &= 3 \\ |z_M - z_S| &= 3 \end{aligned}$$

$$SM = 3$$

$$E = \mathcal{P}_0(SL\binom{2}{2}), r = 3$$

$$4) (E') = \mathcal{P}'(SL' = S(SL), r' = 3\sqrt{2}).$$

Exercice n° 104

$$z^2 - 4\sqrt{3}z + 16 = 0$$

$$\Delta = (4i)^2$$

$$z_1 = 2\sqrt{3} + 2i \text{ et } z_2 = 2\sqrt{3} - 2i$$

$$b) z_A = 4e^{-i\frac{\pi}{6}} \quad z_B = 4e^{i\frac{\pi}{6}}$$

$$c) \frac{z_A}{z_B} = e^{-i\frac{\pi}{3}}$$

$$d) \frac{z_A}{z_B} = \frac{z_A - z_0}{z_B - z_0} = e^{-i\frac{\pi}{3}}$$

$$\Rightarrow z_A - z_0 = e^{-i\frac{\pi}{3}}(z_B - z_0)$$

or $z_0 = 0 \Rightarrow z' = e^{-i\frac{\pi}{3}}z$.

$$3) a) z_0 = \frac{z_A + z_C}{2} \Rightarrow z_C = -z_A$$

$$z_C = -2\sqrt{3} + 2i$$

$$b) \overrightarrow{BC}(A) = D \Rightarrow \overrightarrow{DA} = \overrightarrow{BC}$$

$$z_A - z_D = -4\sqrt{3}$$

$$z_D = -2\sqrt{3} - 2i$$

4) $AB = DC$ et $BC = DA$ alors $ABCD$ est un rectangle.

Exercice n° 105

$$d) z^2 + (2 - \sqrt{3} - i)z + (\sqrt{3} - 1)(-1 + i) = 0$$

$$\Delta = (2 - \sqrt{3} - i)^2 - 4(\sqrt{3} - 1)(-1 + i)$$

$$\Delta = 2 - 2i\sqrt{3} = (\sqrt{3} - i)^2$$

$$S = \{\sqrt{3} - 1; -1 + i\}$$

$$2) S(O) \subseteq B \text{ et } S(A) \subseteq C$$

$$\begin{cases} z_B = az_0 + b \\ z_C = az_A + b \end{cases} \Rightarrow a = -1 - i\sqrt{3} \quad b = -1 + i$$

$$(S): z' = (-1 - i\sqrt{3})z - 1 + i$$

$$3) S = \left\{ \rho_L = 2; \theta = \frac{4\pi}{3} \right\} \cup \left\{ \frac{\sqrt{3}-2}{7} \right\}$$

Exercice n° 106

$$f(z) = z^3 - 5(1+i)z^2 + 18iz + 10(1-i)$$

$$1) a) f(z_0) = 0$$

$$c) f(z) = 0 \Rightarrow z = 1+i; z^2 - 4(1+i)z + 10i = 0$$

$$\Delta = -8i = (2-2i)^2$$

$$S = \{1+i, 3+i, 1+3i\}$$

$$2) z_A = 1+i, z_B = 3+i, z_C = 1+3i$$

$$a) \frac{z_B - z_A}{z_C - z_A} = \frac{2}{2i} = -i$$

$$b) z_G = \frac{z_A + z_B + z_C}{3} = \frac{5}{3} + \frac{5}{3}i$$

Exercice n° 107

$$\begin{cases} x^2 + y^2 = 10 \\ x^2 - y^2 = -8 \\ 2xy = -6 \end{cases} \Rightarrow \begin{cases} x = \pm 1 \\ y = \pm 3 \end{cases}$$

les racines carres de $-8-6i$ sont $1-3i$ et $-1+3i$.

$$2) z^2 - 2(i+i)z + 8(1+i) = 0$$

$$\Delta = -8-6i = (1-3i)^2$$

$$z_1 = 2-2i, z_2 = 4i$$

$$3) P(z) = z^3 - 2iz^2 + 4(1+i)z + 16 + 16i$$

$$a) P(-2) = 0$$

$$b) P(z) = (z+2)(z^2 - 2(1+i)z + 8(1+i))$$

$$c) S = \{-2, 2-2i, 4i\}$$

$$4) b) z_K = \frac{z_B + z_C}{2}$$

$$c) S(A) = A \Rightarrow z_A = az_A + b \\ S(B) = K \Rightarrow z_K = az_B + b$$

$$S: z' = \frac{1}{2}(1-i)z - 1 - i$$

$$5) a) q = \frac{z_C - z_A}{z_B - z_A} = i \text{ alors}$$

ABC est un triangle rectangle et isocèle.

$$c) \frac{z_C - z_A}{z_B - z_A} : \frac{z_C - z_D}{z_B - z_D} \in \mathbb{R}^*$$

Exercice n° 108

$$(iz+1)^3 = 8$$

$$1) a) z^3 = 8 \Rightarrow \begin{cases} r^3 = 8 \\ 3\theta = 2k\pi \end{cases} \begin{cases} r = 2 \\ \theta = \frac{2k\pi}{3} \end{cases}$$

$$k \in \{0, 1, 2\}$$

$$S = \{2; 2e^{i\frac{2\pi}{3}}; 2e^{i\frac{4\pi}{3}}\}$$

$$S = \{2; -1+i\sqrt{3}; -1-i\sqrt{3}\}$$

$$b) \begin{cases} iz_1 + 1 = 2 \\ iz_2 + 1 = -1+i\sqrt{3} \\ iz_3 + 1 = -1-i\sqrt{3} \end{cases} \Rightarrow \begin{cases} z_1 = -i \\ z_2 = \sqrt{3} + 2i \\ z_3 = -\sqrt{3} + 2i \end{cases}$$

$$2) \frac{z_B - z_A}{z_C - z_A} = \frac{1}{2} - i\frac{\sqrt{3}}{2} = e^{-i\frac{\pi}{3}} \text{ alors ABC est équilatéral}$$

$$3) z_G = \frac{z_A + z_B + z_C}{3} = i$$

S = hor:

$$r: z' - z_G = e^{i\frac{\pi}{3}}(z - z_G)$$

$$z' = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)z + \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$h: z' - z_G = 2(z - z_G)$$

$$S = h(r) \Rightarrow z' - z_G = 2\left[\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)z + \frac{\sqrt{3}}{2} + \frac{1}{2}i - i\right]$$

$$S: z' = (1+i\sqrt{3})z + \sqrt{3}.$$

$$S(ABC) = A'B'C' \text{ ou } \begin{cases} A' = SCA \\ B' = SCB \\ C' = SCC \end{cases}$$

$$z_A' = (1+i\sqrt{3})z_A + \sqrt{3}$$

$$z_B' = (1+i\sqrt{3})z_B + \sqrt{3}$$

$$z_C' = (1+i\sqrt{3})z_C + \sqrt{3}.$$

Exercice n° 109

$$f: \begin{cases} x' = x + y + 2 \\ y' = -x + y - 1 \end{cases}$$

$$\Rightarrow 1(x+iy) = x(1-i) + iy(1-i) + 2 - i$$

$$\Rightarrow f: z' = (1-i)z + 2 - i$$

$$\therefore f = \left\{ \begin{array}{l} k = \sqrt{2} \\ \alpha = -\frac{\pi}{4} \end{array} \right. ; S \in \left(\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array} \right)$$

f est une similitude plane directe.

$$\therefore f^{-1}: z = \frac{1}{1-i}z' - \frac{2+i}{1-i}$$

$$\therefore f^{-1}: z' = \frac{1}{2}(1+i)z - \frac{1+\frac{3}{2}i}{2}$$

Exercice n° 110

$$\begin{cases} x' = x - y\sqrt{3} + 2\sqrt{3} \\ y' = x\sqrt{3} + y - \sqrt{3} \end{cases}$$

$$\begin{aligned} 1) z' &= x + i\sqrt{3} - y\sqrt{3} + iy + 2\sqrt{3} - i\sqrt{3} \\ &= x(1+i\sqrt{3}) + y(i - \sqrt{3}) + 2\sqrt{3} - i\sqrt{3} \\ &= \left(\frac{z+\bar{z}}{2}\right)(1+i\sqrt{3}) + \left(\frac{z-\bar{z}}{2i}\right)(i - \sqrt{3}) + 2\sqrt{3} - i\sqrt{3} \end{aligned}$$

$$z' = (1+i\sqrt{3})z + 2\sqrt{3} - i\sqrt{3}.$$

2) f est la similitude plane directe de centre $S(1, 2)$, d'angle $\alpha = \frac{\pi}{3}$ et rapport $k = 2$.

$$2) \begin{cases} x' = x - y\sqrt{3} + 2\sqrt{3} \\ y' = x\sqrt{3} + y - \sqrt{3} \end{cases}$$

$$y' - x'\sqrt{3} = 4y - 6 - \sqrt{3}$$

$$\Rightarrow y = \frac{y' - x'\sqrt{3} + 6 + \sqrt{3}}{4}$$

$$x = \frac{x' + \sqrt{3}y' + 3 - 2\sqrt{3}}{4}$$

$$y = x + 1$$

$$y' - x'\sqrt{3} + 6 + \sqrt{3} = x' + \sqrt{3}y' + 3 - 2\sqrt{3} + 4$$

L'image de la droite D d'équation $y = x + 1$ par f est la droite D' d'équation $(1 - \sqrt{3})y' - (1 + \sqrt{3})x' = 1 + 5\sqrt{3}$

Exercice n° 111

$$z^3 + (4 + 5i)z^2 + (8 - 20i)z - 40i = 0$$

$$\Rightarrow -i\beta^3 - 4\beta^2 - 5i\beta^2 + 8i\beta + 20\beta - 40i = 0$$

$$\Rightarrow -\beta^3 - 5\beta^2 + 8\beta - 40 = 0$$

$$\Rightarrow -4\beta^2 + 20\beta = 0$$

$$\beta_0 = 5i$$

$$(z - 5i)(z^2 + 4z + 8) = 0$$

$$S = \{5i; -2 - 2i; -2 + 2i\}$$

$$2) z_A = -2 + 2i; z_B = 5i; z_C = -2 - 2i$$

b) A, B, C est un triangle quelconque

$$c) \vec{AB} = \vec{DC} \Rightarrow z_D = -4 - 5i$$

$$3) a) z' - z_S = \sqrt{2} e^{i\frac{\pi}{2}} (z - z_S)$$

$$z' = \sqrt{2}iz - i\sqrt{2} + 1.$$

b) Établir l'expression analytique et d'une manière analogue comme l'exercice précédent (Question 3) déduire l'image de $x - y + 1 = 0$.

Exercice 112

$$1) b) z_1 = 2\sqrt{2} e^{i\frac{\pi}{4}}; z_2 = 2\sqrt{2} e^{-i\frac{\pi}{4}}$$

$$2) f: z' = e^{i\frac{\pi}{3}}z$$

a) f est une rotation d'angle $\frac{\pi}{3}$ et de centre $O(0; 0)$.

b) $f(z) = A' \Rightarrow z_{A'} = e^{i\frac{\pi}{3}} z_A$

$$z_{A'} = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) (2 - 2i)$$

$$z_{A'} = (\sqrt{3} + 1) + i(\sqrt{3} - 1).$$

c) $z_{A'} = e^{i\frac{\pi}{3}} \times 2\sqrt{2} e^{i\frac{\pi}{4}}$

$$= 2\sqrt{2} e^{i\frac{\pi}{12}} = 2\sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12}\right)$$

$$\begin{aligned} (\sqrt{3} + 1) &= 2\sqrt{2} \cos \frac{\pi}{12} \Rightarrow \cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \\ (\sqrt{3} - 1) &= 2\sqrt{2} \sin \frac{\pi}{12} \Rightarrow \sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} \end{aligned}$$

Exercice n°113

$$P(z) = z^3 + (-7 + 3i)z^2 + (12 - 16i)z + 4(1+i)$$

a) $-i\beta^3 + 7\beta^2 - 3i\beta^2 + 12i\beta + 16\beta + 4 + 28i$

$$-i\beta^3 - 3\beta^2 + 12\beta + 28 = 0$$

$$7\beta^2 + 16\beta + 4 = 0$$

$$z_0 = -2i$$

b) $P(z) = (z + 2i)(z^2 + (-7 + i)z + 14 - 2i)$

c) $\Delta = -8 - 6i$

$$\Rightarrow S = \{ -2i, 4 - 2i, 3 + i \}$$

2) $S(0) = 0 \Rightarrow b = 0$

$$S(A) = B \Rightarrow a = \frac{z_B - z_A}{z_A} = \frac{2e^{i\frac{\pi}{3}}}{\sqrt{2}e^{i\frac{\pi}{4}}}$$

$$a = \sqrt{2} e^{i\frac{5\pi}{12}}$$

S: $z' = \sqrt{2} e^{i\frac{5\pi}{12}} z$

$$z' = \left[\frac{\sqrt{3}-1}{2} + i\left(\frac{\sqrt{3}+1}{2}\right)\right] z$$

$$S = \left\{ k = \sqrt{2}, \alpha = \frac{5\pi}{12}, 0 (0) \right\}$$

c) $x + iy' = \left[\frac{\sqrt{3}-1}{2} + i\left(\frac{\sqrt{3}+1}{2}\right)\right] (x + iy)$

Exercice n°114

1) $|(1 - i\sqrt{3})z - \sqrt{3} - i| = 4$

$$|1 - i\sqrt{3}| \left| z - \frac{\sqrt{3} - i}{1 - i\sqrt{3}} \right| = 4$$

$$|z - i| = 2 \Rightarrow |z_M - z_A| = 2$$

$$\Rightarrow |A_M| = 2$$

(b) est un cercle de centre A et de rayon $r = 2$.

2) $z' = (1 - i\sqrt{3})z - \sqrt{3} - i$: S

a) S'est une similitude plane directe de rapport $k = 2$; d'angle $-\frac{\pi}{3}$; et de centre $z_S = \frac{b}{1-a} = -\frac{\sqrt{3}}{3} + i$

b) $z_{A'} = (1 - i\sqrt{3})i - \sqrt{3} - i = 0$

$$0S = \left| -\frac{\sqrt{3}}{3} + i \right| = \frac{4}{3}$$

$$AS = \left| -\frac{\sqrt{3}}{3} \right| = \frac{\sqrt{3}}{3}$$

5) $z_0 = 1 + i$

a) $z_0 = \sqrt{2} e^{i\frac{\pi}{4}}$

c) $z_1 = -z_0 = \sqrt{2} e^{-i\frac{\pi}{4}}$

$$z_2 = \bar{z}_0 = \sqrt{2} e^{-i\frac{\pi}{4}}$$

$$z_3 = \sqrt{2} e^{i\frac{3\pi}{4}}$$

Exercice n°115

1) $z' = az + b$

$$z' = z \Rightarrow z_0 = \frac{b}{1-a}$$

2) $z' - z_0 = az + b - \frac{b}{1-a} = a(z - z_0)$

3) $z \neq 0 \Rightarrow AM' = |z' - z_0| = |a(z - z_0)|$

$$AM' = AM$$

$$\text{me}(\overrightarrow{AM}; \overrightarrow{AM'}) = \arg\left(\frac{z' - z_0}{z - z_0}\right) = \arg a$$

ii) $a = -i$ et $b = -1+2i$
 f est une rotation de centre
 $\zeta = \left(\begin{array}{c} 1 \\ 2 \end{array}\right)$ et d'angle $\theta = -\frac{\pi}{2}$.

Exercice n° 117

$$z = 2 - 2i\sqrt{3}$$

$$\begin{cases} x^2 + y^2 = 4 \\ x^2 - y^2 = 2 \\ 2xy = -2\sqrt{3} \end{cases} \quad \begin{cases} x = \pm \sqrt{3} \\ y = \pm 1 \end{cases}$$

$$|z_1| = \sqrt{3} - i = 2e^{-i\frac{\pi}{6}}$$

$$|z_2| = \sqrt{3} + i = 2e^{i\frac{5\pi}{6}}$$

$$2) z^2 + (\sqrt{3} - i)z - 6 - 2i\sqrt{3} = 0$$

$$\Delta = 2 - 2i\sqrt{3} = (\sqrt{3} - i)^2$$

$$z_1 = 2i \text{ et } z_2 = -\sqrt{3} + 3i$$

$$3) |z + \sqrt{3} - i| = 2 \Rightarrow |z_1 - z_2| = 2$$

$$2\sqrt{3} = 2$$

f est un cercle de centre z_2 et de rayon $r = 2$.

$$b) |z_A + \sqrt{3} - i| = 2$$

$$|z_B + \sqrt{3} - i| = 2 \Rightarrow A \in f$$

$$4) \frac{z_2 - z_A}{z_2 - z_B} = e^{-i\frac{\pi}{3}} \text{ alors } \triangle A_B$$

est un triangle équilatéral

$$5) r: z' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z + 2i$$

$$(i) r(A) = A' \Rightarrow z_{A'} = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(2i) + 2i$$

$$z_{A'} = z_B.$$

b) r est une rotation d'angle

$$\alpha = \frac{\pi}{3} \text{ et de centre } z_{z_2} = \frac{4i}{1 - \sqrt{3}}.$$

Exercice n° 118

$$1) z^2 - 2(1+i)z - 6i = 0$$

$$a) \Delta' = (1+i)^2 \Rightarrow \Delta = 2 - 1 - i, 3 + 2i$$

$$b) T: f(z) = 2i \text{ et } f(-1-i) = 3i$$

$$f: z' = -z + 2 + 2i$$

c) T est involutive si et seulement si $f \circ f(z) = -(-z + 2 + 2i) + 2 + 2i = z$.

$$2) a) x' + iy' = -x - iy + 2 + 2i$$

$$\begin{cases} x' = -x + 2 \\ y' = -y + 2 \end{cases}$$

b) $y = x \Rightarrow y' = x'$. La première bissectrice reste globalement invariant par T .

$$c) M(z) \in \mathbb{D} \Rightarrow \arg z = \frac{\pi}{6}(\bar{w}), z = \rho e^{i\frac{\pi}{6}}$$

avec $\rho \in \mathbb{R}_{+}^*$ $\Rightarrow x = \rho \cos \frac{\pi}{6}$
 $y = \rho \sin \frac{\pi}{6}$

$$T(\mathbb{D}) = \mathbb{D}' \Rightarrow M' \in \mathbb{D}'$$

$$M' \begin{cases} x' = -\frac{\sqrt{3}}{2}\rho + 2 \\ y' = -\frac{1}{2}\rho + 2 \end{cases} \Rightarrow y' = \frac{\sqrt{3}}{3}x' + \frac{1}{3} + 2$$

$$\text{Or } y = \frac{\sqrt{3}}{2}x \text{ donc } \mathbb{D}' \parallel \mathbb{D}$$

Exercice n° 119

$$j = e^{i\frac{2\pi}{3}}$$

$$1) -j = -e^{i\frac{2\pi}{3}} = e^{i(\frac{5\pi}{3})} = e^{i(\pi + \frac{2\pi}{3})}$$

$$1+j = 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}$$

$$\frac{1}{1+j} = e^{-i\frac{\pi}{3}}$$

$$2) z' = -jz + 1 = e^{i\frac{5\pi}{3}}z + 1$$

f est une rotation d'angle $\alpha = \frac{5\pi}{3}$

$$b) x+iy = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)(x+iy) + 1$$

$$\begin{cases} x = \frac{1}{2}x + y\frac{\sqrt{3}}{2} + 1 \\ y = -\frac{\sqrt{3}}{2}x + \frac{1}{2}y \end{cases}$$

Exercice n°120

$$\begin{aligned} 1) \quad z_A &= -2i = 2e^{-i\frac{\pi}{2}} \\ z_B &= -\sqrt{3} + i = 2e^{i\frac{5\pi}{6}} \\ z_C &= \sqrt{3} + i = 2e^{i\frac{\pi}{6}} \end{aligned}$$

$$b) z_M = \frac{z_B + z_C}{2} = i$$

$$= |z_B - z_M| = \sqrt{3}.$$

$$1) \frac{z_B - z_A}{z_C - z_A} = \frac{-\sqrt{3} + 3i}{\sqrt{3} + 3i} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}$$

alors ABC est équilatéral.

$$2) a) z - z_A = e^{i\frac{\pi}{3}}(z - z_A)$$

$$z_0' = e^{i\frac{\pi}{3}}(z_0 - z_A) + z_A$$

$$z_0' = -\sqrt{3} - i$$

$$b) |z| = |z + \sqrt{3} + i|$$

$$|z_M - z_0| = |z_M - z_0'|$$

OM = O'M alors (E) est

la médiatrice du segment [OO']

$$4) z' = \frac{1+i}{\sqrt{2}}z + 1 - \frac{1+i}{\sqrt{2}}$$

$$z' = \frac{\sqrt{2}}{2}(1+i)z + 1 - \frac{1+i}{\sqrt{2}}$$

f est une rotation d'angle $\alpha = \frac{\pi}{4}$

$$5) \text{ de centre } z_M = \frac{b}{1-a} = \frac{1 - \frac{\sqrt{2}}{2}(1+i)}{1 - \frac{\sqrt{2}}{2}}$$

$$z_M' = 1$$

$$f = \{ \text{SL}' = 1^\circ, \alpha = \frac{\pi}{4} \}$$

Exercice n°121

$$2z^2 + (\sqrt{3} - i)z + (1 - i\sqrt{3}) = 0$$

$$1) (\sqrt{3} + 3i)^2 = -6 + 6i\sqrt{3}$$

$$2) \Delta = (\sqrt{3} - i)^2 - 8(1 - i\sqrt{3})$$

$$\Delta = -6 + 6i\sqrt{3} = (\sqrt{3} + 3i)^2$$

$$z_1 = \frac{-\sqrt{3} - 1i}{2} \quad z_2 = i$$

$$3) a) r: z' = e^{i\frac{2\pi}{3}}z \quad i\left(\frac{2\pi}{3} - i\frac{5\pi}{6}\right)$$

$$b) z_C = e^{i\frac{2\pi}{3}} \times z_B = e^{-i\frac{\pi}{6}}$$

$$4) a) z_D = \frac{2z_A - z_B + 2z_C}{2 - 1 + 2} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$b) \frac{z_B - z_A}{z_D - z_A} = -i\sqrt{3} \text{ alors ABD}$$

est un triangle rectangle.

Exercice n°122

$$P(z) = z^3 - (4+i)z^2 + (13+4i)z - 13i = 0$$

$$1) P(i) = 0$$

$$b) P(z) = (z-i)(z^2 - 4z + 13)$$

$$c) S = \{i; 2-3i; 2+3i\}$$

$$2) a) z_A' - z_B = e^{i\frac{\pi}{4}}(z_A - z_B)$$

$$z_A' = 2 + (3-2\sqrt{2})i$$

$$b) \frac{z_B - z_C}{z_B - z_A'} = \frac{3\sqrt{2}}{2} \Rightarrow \overrightarrow{BC} = \frac{3\sqrt{2}}{2} \overrightarrow{BA'}$$

h est une homothétie de centre B et de rapport $k = \frac{3\sqrt{2}}{2}$

$$3) S(A) = h_{\text{hor}}(A) = h'(A') = C$$

S est une similitude plane directe

$$S: \{ \alpha = \frac{\pi}{4}; k = \frac{3\sqrt{2}}{2}; B \}$$

Exercice n° 123

$$P(z) = z^3 + \alpha z^2 + \beta z + \delta$$

$$1) P(z) = (z-a)(z-b)(z-c)$$

$$P(z) = z^3 - (a+b+c)z^2 + (abc + ab + bc + ac)z - abc$$

par identification on détermine

$$\alpha, \beta \text{ et } \delta.$$

$$b) a+b+c = 3+2i\sqrt{3}$$

$$ab+ac+bc = 9+13i\sqrt{3}$$

$$abc = -74+2i\sqrt{3}.$$

$$c) \frac{z_B - z_A}{z_B - z_A} = \frac{i\sqrt{3}}{3}$$

$$c) \frac{c-a}{b-a} = 1+i\sqrt{3} = 2e^{i\frac{\pi}{3}}$$

$$c) \frac{AC}{AB} = 2 \text{ et } \text{mes}(\vec{AB}, \vec{AC}) = \frac{\pi}{3}.$$

$$3) a) z_C - z_A = 2e^{i\frac{\pi}{3}}(z_B - z_A).$$

$$z' = (1+i\sqrt{3})z + 9 - i\sqrt{3}$$

$$b) S(B') = B \Rightarrow z_B' = -\frac{5}{4} + \frac{13\sqrt{3}}{4}i$$

Exercice n° 124

$$1) z^2 - 2(1+i\sqrt{3})z + 5+2\sqrt{3} = 0$$

$$\Delta = (2i)^2$$

$$z_1 = (1+i\sqrt{3}) - 4i, z_2 = (1+i\sqrt{3}) + 6i$$

$$2) z_1 = 1-2i; z_2 = 1+2i$$

$$2) \frac{z_D - z_B}{z_A - z_B} = \frac{\sqrt{3} + 3i}{\sqrt{3} - i} = i\sqrt{3}.$$

∴ (AB) et (BD) sont perpendiculaires.

$$c) \frac{z_D - z_B}{z_A - z_B} : \frac{z_D - z_C}{z_A - z_D} = 3$$

$$3) z^2 - 2(1+2\cos\theta)z + 5+4\cos\theta = 0$$

$$\Delta = (i\sin\theta)^2$$

$$z_1 = 1+2e^{i\theta} \text{ et } z_2 = 1+2e^{-i\theta}$$

Exercice n° 125

$$1) \alpha = -\sqrt{3} + i$$

$$a) a = 2e^{i\frac{5\pi}{6}}$$

$$\begin{cases} r^2 = 2 \\ 2\theta = \frac{5\pi}{6} + 2k\pi \end{cases} \Rightarrow a_1 = \sqrt{2}e^{i\frac{5\pi}{12}}$$

$$a_2 = \sqrt{2}e^{i\frac{17\pi}{12}}$$

$$|a| = 2 \Rightarrow \begin{cases} x^2 + y^2 = 2 \\ x^2 - y^2 = -\sqrt{3} \\ 2xy = 1 \end{cases}$$

$$a_1 = \frac{\sqrt{3}-1}{2} + i\frac{\sqrt{3}+1}{2}$$

$$a_2 = -\frac{\sqrt{3}-1}{2} - i\frac{\sqrt{3}+1}{2}$$

$$b) \alpha_1 = \alpha_2 = \sqrt{2}e^{i\frac{5\pi}{12}} = \frac{\sqrt{3}-1}{2} + i\frac{\sqrt{3}+1}{2}$$

$$\begin{cases} \cos\frac{5\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4} \\ \sin\frac{5\pi}{12} = \frac{\sqrt{6}+\sqrt{2}}{4} \end{cases}$$

$$2) a) |z-a| = |z-c| \Rightarrow MB = MC$$

L'ensemble cherché est la médiatrice du segment [BC] dont une équation est :

$$|x+iy + \sqrt{3} - 1| = |x+iy - 7+2i|$$

$$\Rightarrow (BC): x - y - 5 = 0.$$

$$b) 2|z-b| = |a| \Rightarrow MB = \frac{OA}{2}$$

L'ensemble cherché est un cercle de centre B et de rayon 1.

$$3) a) z_S = (1+i\sqrt{3})z_L - 5i\sqrt{3}$$

$$\Rightarrow z_{S2} = 5$$

b) f est une similitude plane directe

$$S = \{z_{S2}; \alpha = \frac{\pi}{3}; k = 2\}.$$

Exercice n° 126

$$-f(z) = (-1+i)z + 1+i$$

i) f est une similitude plane directe de centre $z_{S2} = \frac{1}{5} + \frac{3}{5}i$, d'angle $\alpha = \frac{3\pi}{4}$ et de rapport $k = \sqrt{2}$.

$$ii) x'+iy' = (-1+i)(x+iy) + 1+i$$

$$\begin{cases} x' = -x - y + 1 \\ y' = x - y + 1 \end{cases}$$

iii) L'image de (D): $y = 2x - 1$ par f .

$$\begin{cases} x' = -x - y + 1 \\ y' = x - y + 1 \end{cases} \Rightarrow \begin{cases} y = -\frac{1}{2}x' - \frac{1}{2}y' + 1 \\ x = -\frac{1}{2}x' + \frac{1}{2}y' \end{cases}$$

$$-\frac{1}{2}x' - \frac{1}{2}y' + 1 = 2\left(-\frac{1}{2}x' + \frac{1}{2}y'\right) - 1$$

$y' = \frac{1}{2}x' + \frac{4}{3}$ d'où l'image de (D): $y = 2x - 1$ est la droite

iv) d'équation $y = \frac{1}{2}x + \frac{4}{3}$.

Exercice n° 127

i) a) Il suffit de développer $P(z)$ et confirmer le résultat

$$ii) z^2 + 2\sqrt{2}z + 4 = 0$$

$$\Delta = 4 \times 2 - 4 \times 4 = (2i\sqrt{2})^2$$

$$z_1 = -\sqrt{2} + i\sqrt{2}; z_2 = -\sqrt{2} - i\sqrt{2}$$

$$iii) z = \frac{z_1}{z_2} = \frac{-\sqrt{2} + i\sqrt{2}}{-\sqrt{2} - i\sqrt{2}} = \frac{e^{i\frac{3\pi}{4}}}{e^{i\frac{5\pi}{4}}} = e^{-i\frac{\pi}{2}}$$

$$iv) f: z' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z$$

f est une rotation d'angle $\alpha = \frac{\pi}{3}$ et de centre O .

$$-z_{A'} = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z_A = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(\sqrt{3} + i)$$

$$z_{A'} = 2i$$

$$b) i) z' - z_{A'} = \frac{3}{2}(z - z_{A'})$$

$$-z_{w'} = -\frac{3}{2}z_{A'} + z_{A'} = -i$$

$$S2(O, 1)$$

$$- \frac{z_B - z_{S2}}{z_A - z_{S2}} = \frac{-2 + i\sqrt{3} - i + 1}{\sqrt{3} + i + i} = i$$

alors $(S2B) \perp (S2A)$.

$$\left| \frac{z_B - z_{S2}}{z_A - z_{S2}} \right| = |i| \Rightarrow |z_B - z_{S2}| = |z_A - z_{S2}| = 1$$

alors $S2, A, B$ sont sur un même cercle de centre O et de rayon 1.

Exercice n° 128

$$i) z^3 = 1 \Rightarrow \begin{cases} r = 1 \\ \theta = 2k\frac{\pi}{3} \quad k \in \{0, 1, 2\} \end{cases}$$

$$z_k = e^{\frac{i2k\pi}{3}} \Rightarrow S = \left\{ 1; e^{\frac{i2\pi}{3}}; e^{\frac{i4\pi}{3}} \right\}$$

$$ii) z^3 = 8 \Rightarrow \begin{cases} r = 2 \\ \theta = 2k\frac{\pi}{3} \end{cases}$$

$$z_k = 2e^{\frac{i2k\pi}{3}} \Rightarrow S = \left\{ 2; 2e^{\frac{i2\pi}{3}}; 2e^{\frac{i4\pi}{3}} \right\}$$

$$z_0 = 2, z_1 = -1 + i\sqrt{3}, z_2 = -1 - i\sqrt{3}$$

$$iv) z' = e^{\frac{i2\pi}{3}}z$$

a) f est une rotation d'angle $\frac{2\pi}{3}$

et de centre O.

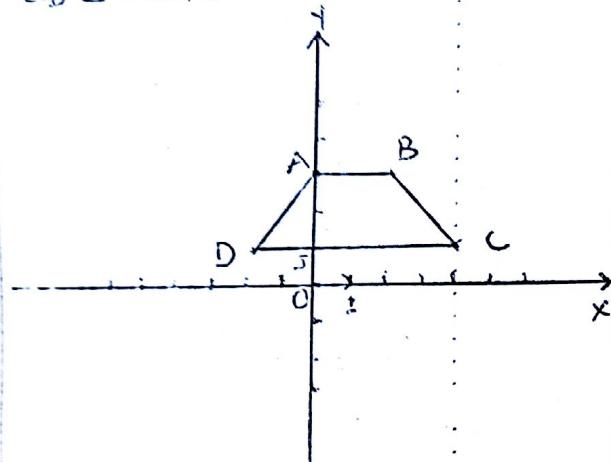
1) $z_A = e^{\frac{i\pi}{3}} z_A$ et $z_C = e^{\frac{i2\pi}{3}} z_C$

2) L'image de la droite (AC) par f est la droite $(A'C')$.

Exercice n° 129

$z_A = 3i$, $z_B = 2+3i$, $z_C = 4+i$

$z_D = -2+i$



1) $DA = c$ et $(AB) \parallel (DC)$.

2) $|z_A - z_D| = |z_B - z_C| = 2\sqrt{2}$ et

$\frac{z_B - z_A}{z_D - z_C} = -\frac{1}{3}$ alors ABCD est trapeze.

2) $\begin{cases} f(A) = C \\ f(B) = D \end{cases} \Rightarrow \begin{cases} z_C = az_A + b \\ z_D = az_B + b \end{cases}$

$\therefore z' = -3z + 4 + 10i$

3) $a = -3$ et $z_{S2} = \frac{b}{1-a} = \frac{4+10i}{4}$

4) $\begin{cases} x' + iy' = -3x - 3iy + 4 + 10i \\ x' = -3x + 4 \\ y' = -3y + 10 \end{cases}$

$\therefore \begin{cases} y = ax + b \\ a = \frac{y_B - y_A}{x_B - x_A} = 0 \end{cases}$

$y = 3$.

L'image de (AB) est la droite $(A'B')$: $\frac{-y' + 10}{3} = 3 \Rightarrow y' = 1$

$(A'B')$ est la droite $y = 1$:

C'est la droite (DC) .

Exercice n° 130

1) $z' = (a+i)z + 1 + bi$

$|a+bi| = \sqrt{a^2+1}$ et $\arg(a+bi) = \frac{3\pi}{4}$

$\left\{ \begin{array}{l} \cos \alpha = \frac{a}{\sqrt{a^2+1}} = -\frac{\sqrt{2}}{2} \\ \sin \alpha = \frac{1}{\sqrt{a^2+1}} = \frac{\sqrt{2}}{2} \end{array} \right.$

$\frac{a^2}{a^2+1} = \frac{2}{4} \Rightarrow \frac{1}{a^2+1} = \frac{1}{2} \Rightarrow a^2 = 1 \Rightarrow a = \pm 1$

$\underline{a = -1}$

2) $a) z_I = \frac{1+bi}{2-i} \Rightarrow I \left(\frac{2-b}{5}; \frac{1+2b}{5} \right)$

b) $\begin{cases} x = \frac{2-b}{5} \\ y = \frac{1+2b}{5} \end{cases} \Rightarrow \begin{cases} b = -5x+2 \\ y = -2x+1 \end{cases}$

Quand b varie, l'ensemble décrit par le point I est la droite d'équation (1): $y = -2x + 1$.

3) $a \neq 0 \Rightarrow f$ est une rotation de centre I et d'angle $\alpha = \frac{\pi}{2}$.

Exercice n° 131

$z' = (1+i\sqrt{3})z + \frac{3+i\sqrt{3}}{2}$

1) $z_J = \frac{\frac{3+i\sqrt{3}}{2}}{1-1-i\sqrt{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$

2) S est une similitude plane directe de centre J , d'angle $\alpha = \frac{\pi}{3}$ et de rapport $k = 2$.

3) a) $|J_A| = \left| -1 + \frac{1}{2} - i \frac{\sqrt{3}}{2} \right| = 1$

$$z_{SL} = \frac{z_J + z_A}{2} = -\frac{3}{4} + i \frac{\sqrt{3}}{4}$$

b) $(J') \Rightarrow \begin{cases} r' = k \times r = 2 \\ z_{SL'} = (1+i\sqrt{3}) \left(-\frac{3}{4} + i \frac{\sqrt{3}}{4} \right) + \frac{3+i\sqrt{3}}{2} \end{cases}$

$$z_{SL'} = 0$$

4) $\left| (1+i\sqrt{3})z + \frac{3}{2} + i \frac{\sqrt{3}}{2} \right| = 1$

$$(1+i\sqrt{3}) \left| z + \frac{3+i\sqrt{3}}{2+i\sqrt{3}} \right| = 1$$

$$\left| z + \frac{3}{2} - i \frac{\sqrt{3}}{2} \right| = \frac{1}{2}$$

$$BM = \frac{1}{2} \text{ avec } z_B = -\frac{3}{2} + i \frac{\sqrt{3}}{2}$$

L'ensemble est un cercle de centre B et de rayon $\frac{1}{2}$.

Exercice n° 132

$$z^3 + (4-2i)z^2 + (8-6i)z + 8-4i = 0$$

1) $z_0 = -2$

$$P(z) = (z+2)(z^2 + (2-2i)z + 4-2i)$$

$$P(z) = 0 \Rightarrow S = \{-2; -1+3i; 1-i\}$$

2) b) $z' - z_{SL} = e^{\frac{i\pi}{2}}(z - z_{SL})$

$$z_B = i(z_A - i) + i$$

$$z_B = -2 \Rightarrow r(A) = B.$$

c) $z_D - z_{SL} = (z_C - i)z_{SL}$
 $\Rightarrow z_D = 2+2i$

3) $|z_A| = |-1+3i-i| = \sqrt{5}$

$$|z_B| = |-2-i| = \sqrt{5}$$

$$|z_D| = |2+2i-i| = \sqrt{5}$$

$$|z_C| = |1-i-i| = \sqrt{5}$$

alors A, B, C et D appartiennent au cercle de centre z_L et de rayon $r = \sqrt{5}$.

Exercice n° 133

$$z^3 - 2z^2 - iz + 3 - i = 0$$

1) $\lambda^3 - 2\lambda^2 + 3 = 0$

$$\lambda - 1 = 0 \Rightarrow \lambda = -1$$

2)

$$(z+i)(z^2 - 3z + 3 - i) = 0$$

$$z = -1 \text{ ou } \Delta = (1+2i)^2$$

$$S = \{-1; 1-i; 2+i\}$$

3) c) $S(A) = B \Rightarrow z_B = a^2 z_A + b$

$$S(B) = C \Rightarrow z_C = a z_B + b$$

$$a = -\frac{1}{2}(1+i) \text{ et } b = \frac{3}{2} + \frac{1}{2}i$$

$$z' = -\frac{1}{2}(1+i)z + \frac{3}{2} + \frac{1}{2}i$$

d) $z_C = -\frac{1}{2}(1+i)z_C + \frac{3}{2} + \frac{1}{2}i$

Exercice n° 134

$$-1) z_1 = \frac{3+i}{1-i}$$

$$c) z_1 = 1+i = \sqrt{2} e^{i\frac{\pi}{4}}$$

$$b) (1+i)^3 - (7+i)(1+i)^2 + 2(8+3i)(1+i) - 10(1+i) = 0.$$

1	-7-i	16+8i	-10-10i
1-i	1+i	-6-6i	10+10i
1	-6	10	0

$$c) (z-1-i)(z^2-6z+10) = 0$$

$$S = \{1+i, 3-i, 3+i\}$$

$$2) z_A = 1+i, z_B = 3+i, z_K = 3-i$$

$$a) \frac{z_A - z_B}{z_K - z_B} = \frac{-2}{-2i} = -i \text{ alors}$$

$\triangle BzK$ est un triangle rectangle
et isocèle en B.

$$b) z_G = \frac{z_A + z_K}{2} = \frac{1+i+3-i}{2} = 2$$

$$r = AG = |1+i-2| = \sqrt{2}$$

$$3) |z-1-i| = |z-3+i|$$

$$d) |z_F - 1-i| = |z_F - 3+i|$$

$$|3+i| = |1+3i| = \sqrt{10} \text{ alors}$$

$$F \in \Delta$$

$$e) |z_M - z_A| = |z_M - z_K|$$

$$AM = KM \text{ alors}$$

Δ est la médiatrice du segment $[AK]$

$$|x+iy - 1-i| = |x+iy - 3+i|$$

$$(x-1)^2 + (y-1)^2 = (x-3)^2 + (y+1)^2$$

$$4x - 4y - 8 = 0$$

$$(\Delta) : x - y - 2 = 0$$

Exercice n° 135

$$z^3 - (1-i)z^2 + 2(1+i)z + 8i = 0$$

$$1) (z-2i)(z^2 + (-1+3i)z - 4) = 0$$

$$z = 2i \text{ ou } \Delta = 8-6i$$

$$z_1 = -1-i, z_2 = 2-2i$$

$$2) a) \frac{z_2 - z_0}{z_1 - z_0} = \sqrt{2} e^{i\frac{\pi}{4}}$$

$$b) z_C - z_A = \sqrt{2} e^{i\frac{\pi}{4}} (z_B - z_A)$$

$$S = \{z_C = \sqrt{2}, \alpha = \frac{\pi}{4}, z_A\}$$

$$3) a) T \text{ est une rotation d'angle } \alpha = \frac{\pi}{4} \text{ et } z_{S2} = \frac{\sqrt{2}(2-\sqrt{2})i}{1-\frac{\sqrt{2}}{2}(1+i)}$$

$$b) T(z) = D \Rightarrow z_D = 3\sqrt{2} + (2-\sqrt{2})i$$

Exercice n° 136

$$z^3 - 2(2+3i)z^2 + (11i-6)z + 7+i = 0$$

$$1) -i\beta^3 + 4\beta^2 + 6i\beta^2 - 11\beta - 6i\beta + 7+i$$

$$\beta = 1 \Rightarrow z_0 = i$$

2)

i	1	-4-6i	11i-6	7+i
i	i	i	-4i+5	-7-i
1	-4-5i	7i-1	0	

$$(z-i)(z^2 + (-4-5i)z - 1+7i) = 0$$

$$z = i \Rightarrow \Delta = -5+12i = (2+3i)^2$$

$$S = \{i; 1+i; 3+4i\}$$

$$3) z_A = i; z_B = 3+4i; z_C = 1+i$$

$$a) z_G = \frac{z_A + z_B + z_C}{3} = 2+3i$$

$$b) AG^2 = |z_G - z_A|^2 = 8$$

$$BG^2 = |z_G - z_B|^2 = 2$$

$$CG^2 = |z_G - z_C|^2 = 5$$

$$c) MA^2 + MB^2 + MC^2 = k$$

soit $G = \text{bar}\{(A; 1); (B; 1); (C; 1)\}$

$$3MG^2 = k - AG^2 - BG^2 - CG^2$$

$$MG^2 = \frac{k - 15}{3}$$

$$\text{si } \frac{k - 15}{3} > 0 \Rightarrow k > 15 \quad \{G; F = \frac{\sqrt{2}}{3}\}$$

$$\text{si } \frac{k - 15}{3} = 0 \Rightarrow k = 15 \text{ le point } G.$$

$$\text{si } \frac{k - 15}{3} < 0 \Rightarrow k < 15 \text{ ensemble vide.}$$

Exercice n° 137

$$z_A = i; z_B = \sqrt{2} \text{ et } z_C = \sqrt{2} + i$$

$$S(A) = I \text{ et } S(O) = B$$

$$z_I = \frac{z_B}{\alpha^2} = \frac{\sqrt{2}}{2}; z_J = \frac{z_A + z_B}{2} = \frac{\sqrt{2} + i}{2}$$

$$z_K = \sqrt{2} + \frac{1}{2}i$$

$$1) a) \begin{cases} z_I = az_A + b \\ z_B = az_D + b \end{cases} \Rightarrow b = \sqrt{2} \\ a = \frac{\sqrt{2}}{2}i$$

$$b) z' = \frac{\sqrt{2}}{2}iz + \sqrt{2}$$

$$c) S = 2k = \frac{\sqrt{2}}{2}; \alpha = \frac{i}{2}; z_{S2} = \frac{2\sqrt{2} + 2i}{3}$$

$$d) z_{A'} = \frac{\sqrt{2}}{2}iz_A + \sqrt{2}$$

$$z_{O'} = \frac{\sqrt{2}}{2}iz_O + \sqrt{2}$$

$$z_B' = \frac{\sqrt{2}}{2}(z_B + \sqrt{2})$$

$$z_C' = \frac{\sqrt{2}}{2}(z_C + \sqrt{2})$$

$$2) S^2 = S \circ S = S(S)$$

$$S^2: z' = \frac{\sqrt{2}}{2}i\left(\frac{\sqrt{2}}{2}(z + \sqrt{2}) + \sqrt{2}\right)$$

$$z' = -\frac{1}{2}z + i + \sqrt{2}$$

$$3) A_n \Rightarrow \begin{cases} A_0 = A \\ A_{n+1} = S(A_n) \end{cases}$$

$$a) A_1 = S(A_0) = \frac{\sqrt{2}}{2}(z_A + \sqrt{2}) = \frac{\sqrt{2}}{2}$$

$$A_2 = S(A_1) = \frac{\sqrt{2}}{2}(z_A + \sqrt{2}) = \sqrt{2} + \frac{1}{2}i$$

$$A_3 = S(A_2) = \frac{\sqrt{2}}{2}(z_A + \sqrt{2}) = 3\frac{\sqrt{2}}{2} + i$$

$$b) A_{n+1} = S(A_n) = \frac{\sqrt{2}}{2}(z_n + \sqrt{2})$$

$$* U_n = |z_{A_{n+1}} - z_{A_n}|$$

$$U_{n+1} = |z_{A_{n+2}} - z_{A_{n+1}}|$$

$$= \left| \frac{\sqrt{2}}{2}z_{A_{n+1}} + \sqrt{2} - \frac{\sqrt{2}}{2}z_{A_n} - \sqrt{2} \right|$$

$$U_{n+1} = \left| \frac{\sqrt{2}}{2}(z_{A_{n+1}} - z_{A_n}) \right|$$

$$U_{n+1} = \frac{\sqrt{2}}{2} |z_{A_{n+1}} - z_{A_n}| = \frac{\sqrt{2}}{2} U_n$$

$$\Rightarrow U_n = \sqrt{2} U_{n+1}$$

$$U_0 = \sqrt{2} U_1 = |z_{A_1} - z_{A_0}| = \frac{\sqrt{6}}{2}$$

* U_n est une suite géométrique

$$U_n = \frac{\sqrt{6}}{2} \left(\frac{\sqrt{2}}{2} \right)^n$$

$$* S_n = \frac{\sqrt{6}}{2} \left(\frac{1 - \left(\frac{\sqrt{2}}{2} \right)^{n+1}}{1 - \frac{\sqrt{2}}{2}} \right)$$

$$= \frac{\sqrt{6}}{2 - \sqrt{2}} \left(1 - \left(\frac{\sqrt{2}}{2} \right)^{n+1} \right)$$

$$\lim_{n \rightarrow +\infty} S_n = \frac{\sqrt{6}}{6} (2 + \sqrt{2})$$

Exercice n° 138

$$z_A = 2; z_B = 2i; z_M = 1+i$$

$$f(z) = \frac{iz+2}{z-2}$$

$$1) f(z) = \frac{i(x+iy)+2}{x+iy-2} = \frac{(-y+2)+ix}{(x-2)+iy}$$

$$2) f(z) = \frac{[(2-y)+ix][(x-2)-iy]}{(x-2)^2 + y^2}$$

$$x = \frac{2x+2y-4}{(x-2)^2 + y^2}$$

$$= \frac{y^2 + x^2 - 2x - 2y}{(x-2)^2 + y^2}$$

$$3) y=0 \Rightarrow y^2 + x^2 - 2x - 2y = 0$$

$$\Rightarrow (x-1)^2 - 1 + (y-1)^2 - 1 = 0$$

$$(x-1)^2 + (y-1)^2 = 2$$

$$4) (z_1(1), r = \sqrt{2})$$

$$5) z_C - z_0 = e^{\frac{i\pi}{4}} (z_A - z_0)$$

$$\Rightarrow z_C = \left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) z_A = -\sqrt{2} - i\sqrt{2}$$

$$6) \frac{z_C - z_0}{z_M - z_0} = -\sqrt{2} \text{ et } \text{mes}(\overrightarrow{oz_2}, \overrightarrow{oc})$$

$$\text{mes}(\overrightarrow{oz_2}, \overrightarrow{oc}) = \pi \text{ alors}$$

C, S et C sont alignés

$$7) z' = f(z)$$

$$8) f(z) = i \Rightarrow \frac{iz+2}{z-2} = i$$

$2 \neq -2i$ alors i n'a pas d'antécédent

$$z' = \frac{iz+2}{z-2} \Rightarrow z = \frac{2z'+2}{z'-i}$$

$$b) \frac{2z'+2}{z'-i} = \frac{2(z_M - z_D)}{z_M - z_E}$$

$$\Rightarrow \left| \frac{2(z_M - z_D)}{z_M - z_E} \right| = \frac{2|M'D|}{M'E}$$

$$DM = \frac{2|M'D|}{M'E} \Rightarrow 2 = \frac{2M'D}{M'E}$$

$$\Rightarrow M'D = M'E$$

La médiatrice du segment [DE]

Exercice n° 139

$$1) SCA) = A \text{ et } SCB) = C$$

$$z' = \frac{1}{4} (1 - i\sqrt{3})z - \frac{3}{2} + \frac{3i\sqrt{3}}{2}$$

$$S = \left\{ \theta_k = \frac{1}{2}; \alpha = -\frac{\pi}{3}; A \left(\begin{matrix} 0 \\ 2\sqrt{3} \end{matrix} \right) \right\}$$

$$2) a) z_1 = z'$$

$$\Rightarrow z_1 = \frac{i}{i - \sqrt{3}} z + 2i\sqrt{3} \left(1 - \frac{i}{i - \sqrt{3}} \right)$$

$$\text{donc } S = f_1.$$

$$b) \frac{z_n - 2i\sqrt{3}}{z - 2i\sqrt{3}} = \lambda^n \text{ or } \lambda = \frac{1}{2} e^{-i\frac{\pi}{3}}$$

$$\lambda \in \mathbb{R}, \Rightarrow \sin\left(-\frac{n\pi}{3}\right) = 0$$

$$n = 3k / k \in \mathbb{Z}$$

$$c) z_n - 2i\sqrt{3} = \lambda(z - 2i\sqrt{3})$$

$\overrightarrow{AM_n} = \lambda \overrightarrow{AM} \rightarrow \lambda \in \mathbb{R}$ alors
A, M, M_n sont alignés et fin
est une homothétie de rapport

Exercice n° 140

$$z_A = a; z_B = b + i$$

$$1) z_C - z_A = e^{i\frac{\pi}{3}} (z_B - z_A)$$

$$z_C = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(b + i - a) + a$$

$$z_C = \left(\frac{1}{2}b + \frac{1}{2}a - \frac{\sqrt{3}}{2}\right) + i\left(\frac{1}{2}\sqrt{3}b - \frac{1}{2}a\right)$$

$$\Rightarrow b + a - \sqrt{3} = 0 \Rightarrow b + a = \sqrt{3}$$

$$2) z_A = \sqrt{3}; z_B = i; z_C = -i$$

$$z_D = 2 + \sqrt{3} - 2i\sqrt{3}$$

$$3) \frac{z_C - z_A}{z_B - z_A} = \frac{-i - \sqrt{3}}{i - \sqrt{3}} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

ΔABC est un triangle équilatéral.

b) $\frac{d-a}{c-a} = i\sqrt{3}$ alors ACD est un triangle rectangle.

$$4) z_E - z_A = e^{i\frac{\pi}{3}} (z_D - z_A)$$

$$z_E = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) (2 + \sqrt{3} - 2i\sqrt{3} - i)$$

$$z_E = 4 + 2\sqrt{3}$$

$$5) \overrightarrow{DF} = \overrightarrow{AC} \Rightarrow z_F - z_D = z_C - z_A$$

$$z_F = \sqrt{3} + i(-1 - 2\sqrt{3})$$

Exercice n° 141

$$z' = u^2 z + u - 1$$

$$1) u^2 = 1 \Rightarrow u = 1 \text{ ou } u = -1$$

$u = 1 \Rightarrow z' = z$ (T) est une translation

$u = -1 \Rightarrow z' = -z - 2$, (T) est une symétrie centrale

$$2) u^2 = e^{i\frac{\pi}{2}} \Rightarrow u_1 = e^{i\frac{\pi}{4}} \text{ ou } u_2 = e^{i\frac{5\pi}{4}}$$

$$3) u^2 = -2 \Rightarrow u_1 = e^{i\frac{\pi}{2}} \text{ ou } u_2 = e^{i\frac{3\pi}{2}}$$

$$4) (F): z' = -2iz - i$$

F est une similitude plane directe: $F = \{k=2, \alpha = -\frac{\pi}{2}, S_2\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\}$

Exercice n° 142

$$1) a) (2-2i)^2 = -8i$$

$$(1+3i)^2 = -8+6i$$

$$2) u^2 + (14+4i)u + 45 + 30i = 0$$

$$\Delta = -8i \Rightarrow u_1 = -6-3i$$

$$u_2 = -8-i$$

$$b) \begin{cases} z^2 - (5+i)z = -6-3i & (1) \\ z^2 - (5+i)z = -8-i & (2) \end{cases}$$

$$S = S_1 \cup S_2$$

3) a) f est une rotation d'angle $\frac{\pi}{2}$ et de centre B.

4) a) g est une homothétie de rapport $k = -2$ et de centre B.

$$b) gof = g(f) = -2iz + 5i$$

gof est une similitude plane directe: $\{ \alpha = -\frac{\pi}{2}, k = 2, B(2)\}$

$$5) z_D = -2iz_E + 5i$$

Exercice n° 143

$$(E): z^2 - \left(\frac{3}{2} + i\frac{\sqrt{3}}{2}\right)z + 1 = 0$$

1) a) Il suffit de vérifier que $\Delta \neq 0$.

b) $z_1 + z_2 = \frac{3}{2} + i\frac{\sqrt{3}}{2}$ donc z_1 et z_2 ne sont pas conjuguées

$$2) a) z_C = \frac{z_1 + z_2}{2} = \frac{1}{2} \left(\frac{3}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2} e^{i\frac{\pi}{6}}$$

$$b) (z_2 - z_1)^2 = (z_2 + z_1)^2 - 4z_2 z_1$$

$$(z_2 + z_1)^2 - 4z_2 z_1 = (2z_c)^2 - 4 \\ = 4(z_c^2 - 1).$$

car $z_2 + z_1 = 2z_c$ et $z_2 z_1 = 1$

$$\begin{aligned} \text{c)} \quad & (\vec{AB}, \vec{CI}) + (\vec{AB}, \vec{CJ}) \equiv \\ & \arg\left(\frac{1-z_c}{z_2-z_1}\right) + \arg\left(\frac{-1-z_c}{z_2-z_1}\right)[2\bar{u}] \\ & \arg\left(\frac{1-z_c}{z_2-z_1} \times \frac{-1-z_c}{z_2-z_1}\right)[2\bar{u}] \\ & \arg\left(\frac{z_c^2-1}{(z_2-z_1)^2}\right)[2\bar{u}] \equiv \arg\left(\frac{1}{4}\right)[2\bar{u}] \\ & \equiv 0[2\bar{u}] \end{aligned}$$

d'où (AB) porte la bissectrice intérieure de l'angle \widehat{ICJ} .

e) a) K est le centre d'un cercle passant par I et J donc K appartient à la médiane du segment $[IJ]$. Or la médiane du segment $[IJ]$ est l'axe des ordonnées.

$$\text{b) } M \in (\ell) \Rightarrow KM = KI \Leftrightarrow |z - iy| = |1 - iy|$$

$$|z - iy|^2 = |1 - iy|^2$$

$$\Rightarrow (z - iy)(\bar{z} + iy) = (1 - iy)(1 + iy)$$

$$z\bar{z} + iy(z - \bar{z}) + y^2 = 1 + y^2$$

$$\Rightarrow z\bar{z} + iy(z - \bar{z}) = 1$$

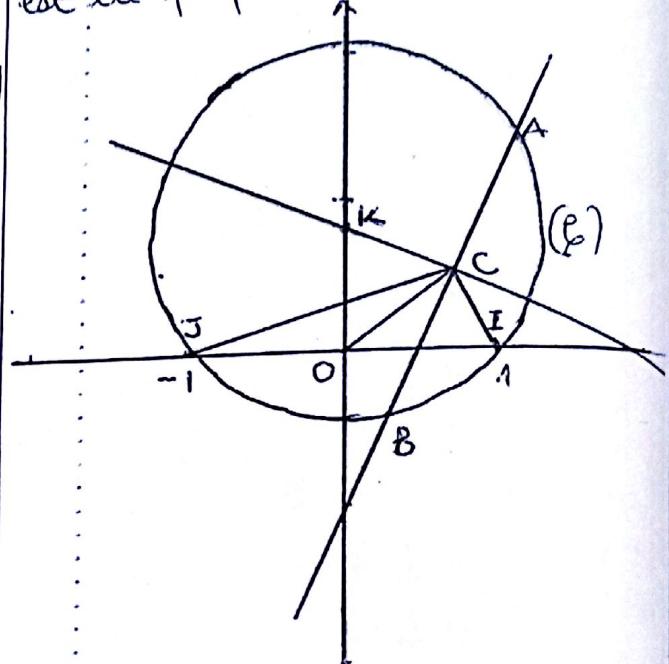
$$\text{c) } A \in (\ell) \Rightarrow z_1 \bar{z}_1 + iy(z_1 - \bar{z}_1) = 1$$

$$\Rightarrow \frac{1}{z_2} \frac{1}{\bar{z}_2} + iy\left(\frac{1}{z_2} - \frac{1}{\bar{z}_2}\right) = 1$$

$$\Rightarrow z_2 \bar{z}_2 + iy(z_2 - \bar{z}_2) = 1$$

$$B \in (\ell).$$

4) b) La droite (AB) porte la bissectrice intérieure de l'angle \widehat{ICJ} . La médiane du segment $[AB]$ est la perpendiculaire en C à (AB) .



Exercice n° 144

$$\text{1) a) } z_1 = -1 = e^{i\pi}$$

$$z_2 = e^{-i\frac{\pi}{3}} \text{ et } z_3 = 2e^{-i\frac{2\pi}{3}}$$

$$\text{b) } z_1^3 = e^{i3\pi} = -1$$

$$z_2^3 = e^{-i\pi} = -1$$

$$z_3^3 = 2^3 e^{-i2\pi} = 8$$

$$\text{2) a) } (x+iy)^3 = x^3 - 3xy^2 + i(y^3 + 3x^2y)$$

$$\text{on a également } (x+iy)^3 = \rho^3 e^{i3\theta}$$

$$|z^3| = \rho^3 \text{ et } \arg z^3 = 3\theta.$$

$$\text{b) } z^3 \text{ est réel si et seulement si } \arg z^3 = 0 \Rightarrow 3\theta = 0 + 2k\pi$$

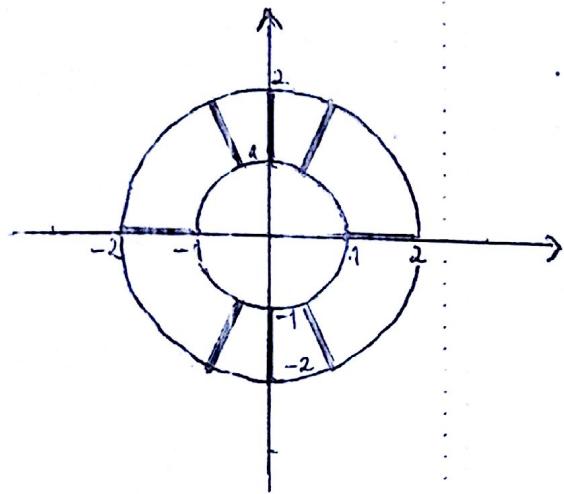
$$\theta = \frac{2k\pi}{3} \text{ ou } \theta = 0$$

$$\theta = \frac{2\pi}{3}.$$

2) si de plus $1 \leq z^3 \leq 8$

$$\text{alors } 1 \leq p^3 \leq 8 \Rightarrow 1 \leq p \leq 2$$

L'ensemble (E') est coloré ci-dessous.



Exercice n° 145

$$1) \text{ a) } 1 + z_0 + z_0^2 + z_0^3 + z_0^4 = \frac{1 - z_0^5}{1 - z_0} = \frac{1 - 1}{1 - z_0} = 0$$

$$1 + \alpha + \beta = 0 \Rightarrow \alpha + \beta = -1.$$

$$\alpha \times \beta = e^{\frac{i6\pi}{5}} + e^{\frac{i8\pi}{5}} + e^{\frac{i12\pi}{5}} + e^{\frac{i14\pi}{5}} = -1$$

d'où α et β sont solutions de

$$z^2 + z - 1 = 0$$

$$\text{b) } \alpha = e^{\frac{i2\pi}{5}} + e^{\frac{i8\pi}{5}} = 2 \cos \frac{2\pi}{5}$$

$$\text{c) } z^2 + z - 1 = 0$$

$$\Delta = 5 \Rightarrow z_1 = -\frac{1 - \sqrt{5}}{2}, z_2 = -\frac{1 + \sqrt{5}}{2}$$

$$\text{1) } \cos \frac{2\pi}{5} > 0$$

$$\Rightarrow \cos \frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{2}$$

$$\text{2) a) } z_1 = z_0 \text{ et } z_4 = \bar{z}_0$$

$$\Rightarrow z_4 = \frac{z_1 + z_2}{2} = \cos \frac{2\pi}{5}$$

b) P d'affixe λ , $P \in \Gamma \Rightarrow$

$$|z - p|^2 = |z - \lambda|^2$$

$$\left(\lambda + \frac{1}{2} \right)^2 = \frac{5}{4}$$

$$z_4 = \frac{-1 + \sqrt{5}}{2} \text{ et } z_2 = \frac{-1 - \sqrt{5}}{2}$$

$$z_M = z_1$$

le milieu de $[OM]$ a pour affixe $\frac{\lambda}{2}$ donc H est le milieu de $[OM]$.

Exercice n° 148

1) $z' = -z + 3 + i$: symétrie centrale de centre $z_{SL} = \frac{b}{2} = \frac{3}{2} + \frac{1}{2}i$

2) $z' = \frac{2}{3}z + 2 + 5i$: homothétie de rapport $-\frac{2}{3}$ et de centre $z_{SL} = \frac{3}{5}(2 + 5i)$

3) $z' = -iz + 5 + i$: rotation d'angle $\alpha = -\frac{\pi}{2}$ et de centre $\frac{5+i}{1+i}$

4) $z' = e^{\frac{i\pi}{4}}z + 3 + i$: rotation d'angle $\alpha = \frac{\pi}{4}$ et de centre $\frac{3+i}{1-e^{\frac{i\pi}{4}}}$

5) $z' = (\sqrt{3} + i)z$: similitude plane directe de centre 0, d'angle $\frac{\pi}{6}$ et de rapport 2.

6) $z' = \frac{3+i\sqrt{3}}{4}z + \frac{1-i\sqrt{3}}{2}$: similitude plane directe de rapport $\frac{\sqrt{3}}{2}$ d'angle $\frac{\pi}{6}$ et de centre à déterminer par l'élève.

7) $z' = -2z + i$: homothétie de rapport -2 et de centre $\frac{1}{3}i$

Exercice n° 149

$$S. (-2; 1) \Rightarrow z_{S2} = -2 + i$$

$$A (1; -1) \Rightarrow z_A = 1 - i$$

$$1) z' - z_{S2} = -(z - z_{S2}).$$

$$z' = -z + 2z_{S2} = -z + 4 + 2i.$$

$$2) z' - z_{S2} = k(z - z_{S2})$$

$$z' = -3(z - z_{S2}) + z_{S2}$$

$$z' = -3(z + 2 - i) - 2 + i$$

$$3) z' - z_{S2} = e^{\frac{i\pi}{4}}(z - z_{S2})$$

$$z' = e^{\frac{i\pi}{4}}(z - z_{S2}) + z_{S2}$$

$$= \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)(z - z_{S2}) + z_{S2}.$$

$$4) z' - z_{S2} = 2e^{\frac{i2\pi}{3}}(z - z_{S2})$$

$$5) z' = z + z_{\overline{S2}} = z + (z_A - z_B).$$

Exercice n° 150

$$z_{S2} = 2 + i \quad S = \{x = \frac{\pi}{4}\}; \quad k = \sqrt{2}; \quad z_{S2}.$$

$$1) z' - z_{S2} = \sqrt{2} e^{\frac{i\pi}{4}}(z - z_{S2}).$$

$$z' = (1+i)z + 1 - 2i$$

$$x' + iy' = (1+i)(z + iy) + 1 - 2i$$

$$\begin{cases} x' = x - y + 1 \\ y' = x + y - 2 \end{cases} \Rightarrow \begin{cases} x = \frac{x' + y' + 1}{2} \\ y = \frac{y' - x' + 3}{2} \end{cases}$$

$$2) 3x + 3y - 4 = 0$$

$$3\left(\frac{x' + y' + 1}{2}\right) + 3\left(\frac{y' - x' + 3}{2}\right) + 4 = 0$$

$$6y' = -24 \Rightarrow y' = -\frac{2}{3}$$

Image de $3x + 3y - 4 = 0$ par

$$S \text{ est } y + \frac{2}{3} = 0.$$

$$3) f(0; r=3). \quad S(f) = f'$$

$$f'(S(0)) = 0' \text{ et } r' = k \times 3.$$

$$z_0' = (1+i)z_0 + 1 - 2i = 1 - 2i$$

$$r' = 3\sqrt{2}.$$

Exercice n° 152

$$1) z_A = \frac{\sqrt{2}}{2} e^{\frac{i\pi}{4}} \quad z_B = \sqrt{2} e^{\frac{i3\pi}{4}}$$

$$2) z_M = e^{\frac{i\pi}{2}} \quad f(M) = MA \times MB.$$

$$a) e^{\frac{i\pi}{2}} - 1 = e^{i2\beta} - e^{i\beta} e^{-i\beta}$$

$$= e^{i\beta} (e^{i\beta} - e^{-i\beta}) \text{ or}$$

$$2i \sin \beta = e^{i\beta} - e^{-i\beta}$$

$$e^{-i\beta} = 2i \times e^{i\beta} \times \sin \beta.$$

$$b) f(M) = MA \times MB$$

$$= |z_A - z_M| |z_B - z_M|$$

$$f(M) = \left| \frac{1}{2}(1+i) - e^{i\beta} \right| \left| (-1+i) - e^{i\beta} \right|$$

$$= \left| \frac{1}{2}(1+i) - 1 + i - \frac{1}{2}(1+i)e^{-i\beta} - (-1+i)e^{-i\beta} + e^{i\beta} \right|$$

$$= \left| -1 + \left(\frac{1}{2} - \frac{3}{2}i \right)e^{i\beta} + e^{i2\beta} \right|.$$

$$f(M) = \left| e^{i2\beta} - 1 - \frac{1}{2}(-1+3i)e^{i\beta} \right|$$

$$c) f(M) = \sqrt{\frac{1}{4} + \left(-\frac{3}{2} + 2\sin \beta \right)^2}$$

$$f(M) = \left| 2i e^{i\beta} \sin \beta + \left(\frac{1}{2} - \frac{3}{2}i \right) e^{i\beta} \right|$$

$$= \left| e^{i\beta} \right| \left| \frac{1}{2} + i \left(-\frac{3}{2} + 2\sin \beta \right) \right|$$

$$f(M) = \sqrt{\frac{1}{4} + \left(-\frac{3}{2} + 2\sin \beta \right)^2}$$

$$1) \left(-\frac{3}{2} + 2\sin\beta\right)^2 = 0$$

Exercice n° 153

$$z_A = 4e^{i\frac{\pi}{3}} \text{ et } z_B = 4e^{-i\frac{\pi}{3}}$$

1) $|z_A| = |z_B| = 4$ alors A et B appartiennent à un même cercle de centre O et de rayon 4.

$$2) |z| = \frac{z_A}{z_B} = e^{i\frac{2\pi}{3}}$$

$$\frac{z_A - z_0}{z_B - z_0} = e^{i\frac{2\pi}{3}} \Rightarrow z_A - z_0 = e^{\frac{i2\pi}{3}}(z_B - z_0)$$

$$r(B) = A \text{ avec } \alpha = \frac{2\pi}{3}.$$

$$3) z' = e^{i\frac{2\pi}{3}}z \Rightarrow x' + iy' = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(x + iy)$$

$$x' = -\frac{1}{2}x - y\frac{\sqrt{3}}{2}$$

$$y' = x\frac{\sqrt{3}}{2} - \frac{1}{2}y$$

$$4) r(r=1; z_0=0); r'(r'=1; z_0=0)$$

$$\begin{aligned} x' &= -\frac{1}{2}x - y\frac{\sqrt{3}}{2} & x &= -\frac{x' + \sqrt{3}y'}{2} \\ y' &= x\frac{\sqrt{3}}{2} - \frac{1}{2}y & y &= -\frac{\sqrt{3}x' - y'}{2} \\ -\frac{\sqrt{3}x' - y'}{2} &= -x' + \sqrt{3}y' \end{aligned}$$

$$5) z_0 = \frac{z_A + z_B + z_C}{3}$$

$$\Rightarrow z_0 = -z_A - z_B = -4$$

6) ABC est équilatéral.

Exercice n° 154

$$z_A = 2+i; z_B = -4+3i; z_C = -2-i$$

$$1) \frac{z_B - z_C}{z_A - z_C} = \frac{-2+4i}{4+2i} = i = e^{i\frac{\pi}{2}}$$

Corrigés

alors CAB est rectangle et isocèle en C.

$$2) r(C; \alpha = \frac{\pi}{3})$$

$$z' - z_C = e^{i\frac{\pi}{3}}(z - z_C)$$

$$z' = i(z - z_C) + z_C = iz - 3 + i$$

$$3) z_D = \frac{z_A + z_B}{2} = -1+2i$$

$$z' - z_D = -(z - z_D)$$

$$z' = -z + 2z_D = -z - 2 + 4i$$

$$4) f = r \circ s = r(s)$$

$$f = i(-z - 2 + 4i) - 3 + i$$

$$f = -iz - 7 - i$$

f est une rotation de centre B et d'angle $-\frac{\pi}{2}$.

Exercice n° 155

$$\begin{aligned} x' &= \theta \cos 2\theta x - \theta \sin 2\theta y : f_\theta \\ y' &= \theta \sin 2\theta x + \theta \cos 2\theta y : f_\theta \end{aligned}$$

$$1) z' = \theta \cos 2\theta x + i\theta \sin 2\theta x - \theta \sin 2\theta y + i\theta \cos 2\theta y$$

$$z' = \theta \cos 2\theta (x+iy) + i\theta \sin 2\theta (x+iy)$$

$$z' = \theta (\cos 2\theta + i \sin 2\theta) z$$

$$z' = \theta e^{i2\theta} z$$

$$2) F_\theta = \{ \theta = \theta; \alpha = 2\theta; z_0 = 0 \}$$

3) F_θ est une rotation si et seulement si $|\theta e^{i2\theta}| = 1$.

4) F_θ est une homothétie

$$\theta \sin 2\theta = 0 \Rightarrow \begin{cases} 2\theta = 0 + 2k\pi \\ 2\theta = \pi + 2k\pi \end{cases}$$

Exercice n° 156

$$\gamma: z^2 - 8\sqrt{3}z + 64 = 0$$

$$\Delta = (8i)^2 \Rightarrow z_1 = 4(\sqrt{3} - i)$$

$$z_2 = 4(\sqrt{3} + i)$$

$$\text{a) } z_A = 8 \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right)$$

$$z_B = 8 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right).$$

b) $OA = OB = AB = 8$ alors

$\triangle ABC$ est équilatéral

$$\text{c) } z_C = -\sqrt{3} + i = z_C e^{\frac{i\pi}{6}}$$

$$\text{d) } z_D = 0 \Rightarrow z_D = e^{\frac{i\pi}{3}} z_C = 2i$$

$$\text{e) } z_G = \frac{z_A + z_D + z_B}{-1 + 1 + 1} = 4\sqrt{3} + 6i$$

$$\text{f) } \frac{z_C - z_D}{z_G - z_D} = \frac{-\sqrt{3} - i}{4\sqrt{3} + 4i} = -\frac{1}{4} \in \mathbb{R}^*$$

alors C, D et G sont alignés.

$$\text{g) } \frac{z_G - z_C}{z_A - z_C} = \frac{5\sqrt{3} + 5i}{5\sqrt{3} - 5i} = \frac{\sqrt{3} + i}{\sqrt{3} - i} e^{\frac{i\pi}{3}}$$

alors AGC est équilatéral.

Exercice n° 157

$$P(z) = z^3 + (1-5i)z^2 + (-28-7i)z + 18-84i$$

$$\text{1) } \alpha = -2 \text{ et } P(-2i) = 0$$

2)

	1	$1-5i$	$-28-7i$	$18-84i$
$-2i$		$-2i$	$-14-2i$	$-18+84i$
	1	$1-7i$	$-42-9i$	0

$$P(z) = (z + 2i)(z^2 + (1-7i)z - 42-9i)$$

$$\text{f) } z_A = -2i; z_B = 5+4i; z_C = -6+3i$$

$$\text{g) } \begin{cases} P(A) = B \\ P(B) = C \end{cases} \Rightarrow \begin{cases} z_B = az_A + b \\ z_C = az_B + b \end{cases}$$

$$a = \frac{z_B - z_C}{z_A - z_B} = -1 + i \text{ et } b = 3 + 2i$$

$$\text{h) } z' = (-1+i)z + 3 + 2i$$

c) f est une similitude plane directe.

$$f = \begin{cases} f_c = \sqrt{2}; \lambda = \frac{3\pi}{4}; z_S = z_A \end{cases}$$

$$\text{d) } x' + iy' = (-1+i)(x+iy) + 3 + 2i$$

$$\begin{cases} x' = -x - y + 3 \\ y' = x - y + 2 \end{cases}$$

$$\text{e) l'image de } y = -x + 3$$

$$y = \frac{-x' - y' + 5}{2} \text{ et } x = -\frac{x' + y' + 1}{2}$$

$$-\frac{x' - y' + 5}{2} = \frac{x' - y' + 1}{2} + 3$$

$$\Rightarrow -2x' = 0 \Rightarrow x' = 0$$

l'image de D est la droite D' d'équation $x = 0$.

$$\text{f) } f_b = (I(-1; 3); r = 2)$$

$$f_b(z) = z' \Rightarrow f_b'(I' = f_b(I); r' = 2\sqrt{2})$$

$$z' = (-1+i)(-1+3i) + 3 + 2i = 1 - 2i$$

$$r' = 2\sqrt{2}$$

$$(x-1)^2 + (y+2)^2 = (2\sqrt{2})^2 : (f')$$

Exercice n° 158

$$z^3 - 6iz^2 - 18z + 40i = 0$$

$$\text{a) } P(x) = -x^3 + 6x^2 - 18x + 40$$

$$P(i\beta) = i(-\beta^3 + 6\beta^2 - 18\beta + 40)$$

$$P(i\beta) = i(\beta - 4)(-\beta^2 + 2\beta - 10)$$

$$\beta = 4 \Rightarrow z_D = 4i$$

$$-\beta^2 + 2\beta - 10 = 0 \Rightarrow \Delta = (6i)^2$$

$$\beta_1 = 1+3i \Rightarrow z_1 = i\beta_1 = -3+i$$

$$\beta_2 = 1-3i \Rightarrow z_2 = i\beta_2 = 3+i$$

$$\beta = \{4i, -3+i, 3+i\}$$

a) $z_A = 4i$ $z_B = 3+i$ et $z_C = -3+i$

b) $\underline{z_A} - z_A = -i$ alors ABC est un \triangle rectangle et isocèle

c) $\underline{z_B} - z_A = -i$ $\underline{z_B} - z_C = -i$

d) $z' = -iz - 4 + 4i$

e) f est une rotation d'angle $\frac{\pi}{2}$ de centre A.

f) $S = g \circ f = g(\varphi)$.

$$\therefore z' = -2(-iz - 4 + 4i) + 12i$$

$$z' = 2iz + 8 + 4i$$

g) $S = \{k=2, \alpha = \frac{\pi}{2}; z_S = z_A\}$

Exercice n° 159

$$1) 2z^3 - (4+2i)z^2 + (3+2i)z - 1 - i = 0$$

$$2) 2\lambda^3(1+i)^3 - (4+2i)\lambda^2(1+i)^2 + (3+2i)\lambda(1+i) - 1 - i = 0$$

$$4\lambda^3 - 4\lambda^2 - 8i\lambda^2 + 4\lambda^2 + \lambda + 5i\lambda - 1 - i = 0$$

$$\begin{cases} -4\lambda^3 + 4\lambda^2 + \lambda - 1 = 0 \\ 4\lambda^3 - 8\lambda^2 + 5\lambda - 1 = 0 \end{cases} \Rightarrow \lambda = 1$$

Verifie le système.

$$4\lambda^3 - 8\lambda^2 + 5\lambda - 1 = (\lambda - 1)(2\lambda - 1)^2$$

$$\Rightarrow \lambda = 1 \text{ ou } \lambda = \frac{1}{2}.$$

$$z_0 = 1 \times (1+i).$$

Après la méthode Horner on

$$\therefore (2-1-i)(2z^2 - 2z + 1) = 0$$

Corrigés

$$z_0 = 1+i, z_1 = \frac{1}{2}(1+i), z_2 = \frac{1}{2}(1-i)$$

2) a) $\frac{z_{M_1} - z_0}{z_{M_2} - z_0} = i$

b) $\overrightarrow{OM_1} = \overrightarrow{M_3 M_2}$

$$z_{M_1} - z_0 = z_{M_2} - z_{M_3} \Rightarrow z_{M_3} = z_{M_2} - z_{M_1}$$

$$z_{M_3} = -i$$

Exercice n° 160

$$F: z' = m^3 z + m(m+1) \quad m \in \mathbb{C}^*$$

1) la nature de la transformation

F dépend des valeurs de m.

2) $m = 1+i$

$$F: z' = 2(-1+i)z + 1 + 3i$$

F est une similitude plane directe.

$$F: \text{fct } z' = 2\sqrt{2}z, \alpha = \frac{3\pi}{4}, z_S = \frac{-3+3i}{13}$$

3) F est une translation si et seulement si $m^3 = 1$

$$m^3 = e^{\frac{2k\pi i}{3}} \quad k \in \{0, 1, 2\}$$

4) F est une homothétie de rapport 8 si et seulement si $m^3 = 8$

$$m^3 = 2e^{\frac{2k\pi i}{3}} \quad k \in \{0, 1, 2\}$$

Exercice n° 161

$$\begin{cases} x' = ax - by + a' \\ y' = bx + ay + b' \end{cases}$$

1) $z' = x' + iy'$

$$= ax + ibx - by + iay + a' + bi' \\ = (a+ib)x + i(a+ib)y + a' + bi'$$

$$z' = (a+ib)(x+iy) + a' + bi'$$

$$z' = (a+ib)z + a'+ib'$$

$$m = a+ib \text{ et } p = a'+ib'$$

2) T est une translation si et seulement si $m = 1$ et $p = z'$

$$\begin{cases} a+ib = 1 \\ a'+ib' = -2+i \end{cases} \Rightarrow \begin{cases} a=1 & b=0 \\ a'=-2 & b'=1 \end{cases}$$

3) T est une homothétie de centre $A(1; 2)$

$$\begin{cases} m = 3 \\ z_A = \frac{p}{1-m} \end{cases} \Rightarrow \begin{cases} a+ib = 3 \\ a'+ib' = -2-4i \end{cases}$$

4) T est une rotation de centre $I(0; 1)$ et d'angle $\frac{3\pi}{4}$

$$\begin{cases} m = e^{\frac{3\pi i}{4}} \\ z_I = \frac{p}{1-m} = i \end{cases} \Rightarrow \begin{cases} m = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \\ \frac{a+ib}{1+\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}} = i \end{cases}$$

$$\begin{cases} a+ib = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \\ a'+ib' = i\left(\frac{2+\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right). \end{cases}$$

Exercice n° 162

$$f: z' = z^2 - 4z$$

$$\text{a) } z_A = 1-i \text{ et } z_B = 3+i$$

$$z_A' = z_A^2 - 4z_A = -4+2i$$

$$z_B' = z_B^2 - 4z_B = -4+2i$$

b) appelons u et v les affixes des points U et V en question.

$u' = u^2 - 4u$ et $v' = v^2 - 4v$. Leurs images sont identiques si et seulement si $u' = v' \Leftrightarrow$

$$u^2 - v^2 - 4u + 4v = 0$$

$$(u-v)(u+v) - 4(u-v) = 0$$

$$(u-v)(u+v-4) = 0$$

$$u = v \text{ soit } u+v = 4$$

$\frac{u+v}{2} = 2$, et dans ce cas le milieu de $[UV]$ a pour affixe et l'un est l'image de l'autre par la symétrie de centre 2 .

$$2) z_I = -3$$

$$\text{a) } \overrightarrow{OM} = \overrightarrow{M'I} \Rightarrow z = -3 - z' = -3z^2 \Rightarrow z^2 - 3z + 3 = 0$$

$$\text{b) } S = \left\{ \frac{3}{2} + i\frac{\sqrt{3}}{2}, \frac{3}{2} - i\frac{\sqrt{3}}{2} \right\}$$

$$\text{3) a) } (z'+4) = z^2 - 4z + 4 = (z-2)^2$$

$$\Rightarrow |z'+4| = |z-2|^2$$

$$\arg(z'+4) = 2\arg(z-2) + 2k\pi$$

b) M un point de (f) de centre $I(2)$ et de rayon 2, son affixe z telle que $|z-2| = 2$ et son image M' est telle que $|z'+4| = 2^2 = 4$ d'où $M' \in (f')$ de centre $K(-4)$ et de rayon 4.

c) $z_E + 4 = -3i = 3e^{i\frac{3\pi}{2}}$, si E est l'image d'un point z , on a: $\arg(z_E + 4) = 2\arg(z) - \frac{\pi}{2} = 2\arg(z-2) + 2k\pi \Rightarrow \arg(z-2) = \frac{1}{4}k\pi$

sur le cercle trigonométrique il y'a $-\frac{\pi}{4}$ et $\frac{3\pi}{4}$

$$|z_E + 4| = 3|z-2| \Rightarrow |z-2| = 3$$

on a donc $\begin{cases} z-2 = 3e^{i\frac{\pi}{4}} \\ z-2 = 3e^{i\frac{5\pi}{4}} \end{cases}$ soit

$$z = 2 + 3\left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) \text{ ou}$$

$$z = 2 + 3\left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right).$$

Exercice n° 163

$$f(z) = \frac{z-2+i}{z+2i}$$

$$1) f(z) = \frac{[(x-2)+i(y+1)]}{[x+i(y+2)]}$$

$$f(z) = \frac{[(x-2)+i(y+1)]}{[x-i(y+2)]} \cdot \frac{x^2 + (y+2)^2}{x^2 + (y+2)^2}$$

En développant, on trouve

$$f(z) = \frac{x^2 + y^2 - 2x + 3y + 2 + i(2y - x + 4)}{x^2 + (y+2)^2}$$

On déduit $Re(z) = \frac{x^2 + y^2 - 2x + 3y + 2}{x^2 + (y+2)^2}$

$$Im(z) = \frac{2y - x + 4}{x^2 + (y+2)^2}$$

2) a) $Im(z) = 0 \Rightarrow 2y - x + 4 = 0$

cest la droite d'équation $2y - x + 4 = 0$ privée de B ($-2i$).

b) $Re(z) = 0 \Rightarrow x^2 + y^2 - 2x + 3y + 2 = 0$

$$(x-1)^2 + (y+\frac{3}{2})^2 = \frac{5}{4}$$

F est un cercle de centre $S(1, -\frac{3}{2})$ et de rayon $\frac{\sqrt{5}}{2}$ privé de B.

3) $\Rightarrow (\overrightarrow{BM}, \overrightarrow{AM}) = \arg\left(\frac{z - z_A}{z - z_B}\right) = \arg z$

z est réel ($\Leftrightarrow z = z_A \Rightarrow \arg(z) = 0$)

Cette condition équivaut au fait que le point M $\in (AB)$ privée de A et B.

* z est imaginaire ($\Leftrightarrow z = z_A$ ou $\arg(z) = \frac{\pi}{2}$).

+) $|f(z) - 1| |z + 2i| = \left| \frac{z - 2 + i}{z + 2i} - i \right| |z + 2i|$
 $= | -2 - 4i | = \sqrt{5}$

Dire que le point M parcourt le cercle de centre B et de rayon $\sqrt{5}$ équivaut à $BM = \sqrt{5}$ dans ce cas $|f(z) - 1| = 1 \Leftrightarrow IM' = 1$, en appelant I le point d'affixe $\frac{1}{2}$, on conclut que le point M décrit le cercle de centre I et de rayon $\frac{1}{2}$.

Exercice n° 164

1) $\frac{\overrightarrow{AB}}{\overrightarrow{AC}} = \frac{z_B - z_A}{z_C - z_A} = \frac{28 + 4i}{80} \notin \mathbb{R}$
 \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires

b) $z_I = \frac{z_A + z_C}{2} = 2$

3) a) $z_I = \frac{z_B + z_D}{2} \Rightarrow z_D = 3 - i$

b) $AC = BD = \sqrt{10}$

c) $\frac{\overrightarrow{AB}}{\overrightarrow{AC}} = \frac{28 + 4i}{80} \notin \mathbb{R}$, alors \overrightarrow{AB} et \overrightarrow{AC} ne sont pas orthogonaux alors ABCD n'est pas un carré.

4) a) $M(z) \in E \Leftrightarrow \left| \frac{z-1-i}{z+2i} \right| = 1$.

$$\Rightarrow \left| \frac{z_M - z_B}{z_M - z_A} \right| = 1 \Rightarrow MA = MB \text{ alors}$$

M $\in \tilde{\alpha}$ la médiatrice de $[AB]$

b) $M(z) \in P \cap F \Rightarrow \frac{z-1-i}{z+2i} \in \mathbb{R}^*$

$$\frac{z_M - z_B}{z_M - z_A} \in \mathbb{R}_+^* \Rightarrow (\overrightarrow{MA}, \overrightarrow{MB}) \equiv 0 [2\pi]$$

alors $F = (AB) \setminus [AB]$.

Exercice n° 165

1) b) $\Delta = 6 - 6i\sqrt{3} = (3 - i\sqrt{3})^2$

$$S = \{2; -1 + i\sqrt{3}\}$$

3) $b = -1 + i\sqrt{3} = 2\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{2\pi}{3}}$
 $c = -1 - i\sqrt{3} = 2\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{4\pi}{3}}$

$|b| = |c| = 2 \Rightarrow OB = OC = 2$ alors

B $\in (f)$ et C $\in (f)$.

4) $\frac{c}{b-2} = \frac{\sqrt{3}}{3}$ et $\frac{2}{c-b} = i\frac{\sqrt{3}}{3}$

b) $(\overrightarrow{AB}, \overrightarrow{OC}) = \arg\left(\frac{c}{b-2}\right) = \arg\left(\frac{\sqrt{3}}{3}\right)$

$$= \frac{\pi}{2} [2\pi] \text{ d'où } O \text{ appartient}$$

à la hauteur issue de C du triangle ABC.

$(\overrightarrow{BC}, \overrightarrow{OA}) = \frac{\pi}{2} [2\pi] \text{ d'où } O \text{ appartient}$

à la hauteur issue de A du triangle ABC d'où O est donc l'orthocentre du triangle ABC

Exercice n° 166

1) $\Delta = 2(1-i)^2 + 16i = 12i = 6(1+i)^2$
 $s = \left\{ \frac{(\sqrt{2}+\sqrt{6})+i(\sqrt{6}-\sqrt{2})}{4}, \frac{(\sqrt{2}-\sqrt{6})-i(\sqrt{6}+16)}{4} \right.$

2) a) $1-i = \sqrt{2} e^{i\frac{\pi}{4}}$

b) $(e^{i\frac{\pi}{4}})^2 - \sqrt{2}(1-i)(e^{i\frac{\pi}{4}})^2 - 2i$

c) $(e^{-i\frac{\pi}{3}})^2 - e^{-i\frac{\pi}{3}} + 1 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) + 1$

et l'équation $z^2 - z + 1 = 0$ donc

$e^{-i\frac{\pi}{3}}$ et $e^{i\frac{\pi}{3}}$ sont les solutions

de $z^2 - z + 1 = 0$

c) $e^{-i\frac{\pi}{3}} \cdot e^{i\frac{\pi}{4}} = e^{-i\frac{2\pi}{12}}$ et $e^{i\frac{\pi}{3}} \cdot e^{-i\frac{\pi}{4}} = e^{i\frac{\pi}{12}}$

$\operatorname{Re}(e^{i\frac{\pi}{12}}) > 0$ et $\operatorname{Im}(e^{i\frac{\pi}{12}}) > 0$

$e^{i\frac{\pi}{12}} = \frac{(\sqrt{2}+\sqrt{6})+i(\sqrt{6}-\sqrt{2})}{4}$

$\Rightarrow \cos \frac{\pi}{12} = \frac{\sqrt{2}+\sqrt{6}}{4}$

Exercice n° 167

a) $(\sqrt{5}+2i)^2 = 1+4i\sqrt{5}$
b) $\Delta = (\sqrt{5}+2i)^2 - 4(1+4i\sqrt{5})^2$

$\Delta = -3(\sqrt{5}+2i)^2$

c) $\Delta = \left[\sqrt{3}(\sqrt{5}+2i) \right]^2$

$a = \frac{\sqrt{5}+2i}{2}(1+i\sqrt{3})$ et $b = \frac{\sqrt{5}+2i}{2} \left(\frac{1-i\sqrt{3}}{2} \right)$

2) b) $OQ = |z_0| = 3$ alors $Q \in (\ell)$.

3) $OA = |a| = |\sqrt{5}+2i| \left| \frac{1+i\sqrt{3}}{2} \right| = \frac{1}{2} OQ$

$OB = |b| = |\sqrt{5}+2i| \left| \frac{1-i\sqrt{3}}{2} \right| = OQ$.

$A \in (\ell)$ et $B \in (\ell)$.

b) $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OQ}$

$2\overrightarrow{OA} + 2\overrightarrow{OB} = a+b = 2\overrightarrow{OQ} = \sqrt{5+16}$

ainsi $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OQ}$

c) $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OQ}$ donc OAB est un parallélogramme, de plus $OA = OB$ alors OAB est un losange.

Exercice n° 168

1) $b = 2\sqrt{3} \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i \right) = 2\sqrt{3} e^{-i\frac{\pi}{3}}$

2) a) $z_E = \frac{z_A + 3z_B}{4} = -\frac{\sqrt{3}}{2} + \frac{3}{2}i$

$z_F = \frac{2z_A + z_B}{3} = -\sqrt{3} - i$

3) a) $\frac{e-c}{e-b} = \frac{-\sqrt{3} - i}{3(\sqrt{3}+3i)} = \frac{\sqrt{3} + i}{9}$

$k = \frac{\sqrt{3}}{9}$. On a donc $(\overrightarrow{BE}, \overrightarrow{CE}) = \frac{\pi}{2}$

et comme E est sur $[AC]$ alors (BE) est une hauteur de ABC.

c) $\frac{f-c}{f-a} = -\frac{4\sqrt{3}i}{10} = -\frac{2\sqrt{3}}{5}i$

4) Utiliser H comme barycentre partiel du système $(F;3)$; $(C;6)$ donc H est sur (CF) ; de même H barycentre de $(B;1)$; $(E;4)$ donc H est sur (BE) .

Exercice n° 169

1) a) $f(i) = i \cdot i + 2 + i = 1 + i$

$z_A' = 1 + i$

2) a) $f(z) = z \Rightarrow z = it + 2 + i$

$$z = \frac{2+i}{1-i} = \frac{1}{2} + \frac{3}{2}i$$

c) $SA = SA' = \frac{\sqrt{2}}{2}$ et $\frac{z_A - z_A'}{z_A' - z_A} = -i$
d'où $\overrightarrow{SA} \perp \overrightarrow{SA'}$.

3) a) $f(z) = i(x+iy) + 2 + i$

$$f(z) = (-y+2) + i(x+1)$$

b) $f(z)$ est réel si et seulement si $x = -1$.

Exercice n° 170

1) $z = (1+i\sqrt{3})z + \sqrt{3} \Rightarrow z = i$

2) a) $\overrightarrow{z_{SM'}} = (1+i\sqrt{3})z - i(1+i\sqrt{3})$
 $= (1+i\sqrt{3})(z-i)$

$$\overrightarrow{z_{SM'}} = (1+i\sqrt{3})\overrightarrow{z_{SM}}$$

b) $\frac{\overrightarrow{z_{SM'}}}{\overrightarrow{z_{SM}}} = 1+i\sqrt{3} = 2e^{i\frac{\pi}{3}}$

cos $(\overrightarrow{z_{SM}}, \overrightarrow{z_{SM'}}) = \frac{\pi}{3}$, et $\frac{SM'}{SM} = 2$.

3) a) $z = \frac{z' - \sqrt{3}}{1+i\sqrt{3}} = \frac{x' + iy' - \sqrt{3}}{1+i\sqrt{3}}$
 $z = \frac{[(x' - \sqrt{3}) + iy'][1 - i\sqrt{3}]}{2}$

$$\begin{cases} x = x' + \sqrt{3}y' \\ y = -x' + y' + 3 \end{cases}$$

4) $y = x\sqrt{3} + 1$
 $-x' + y' + 3 = (x' + \sqrt{3}y')\sqrt{3} + 1$

$$y' = \frac{(-1 - \sqrt{3})x' + 1}{2}$$

(D) $\therefore y = -\left(\frac{1 + \sqrt{3}}{2}\right)x + 1$

Exercice n° 171

$$z_n = \left(\frac{1+i}{2}\right)^n (1+i\sqrt{3})$$

$$1) z_{n+1} = \left(\frac{1+i}{2}\right)^{n+1} (1+i\sqrt{3})$$

$$= \left(\frac{1+i}{2}\right) \left(\frac{1+i}{2}\right)^n (1+i\sqrt{3})$$

$$z_{n+1} = \frac{1+i}{2} z_n$$

z_n est une suite géométrique de raison $q = \frac{1+i}{2}$ et de premier terme

$$z_0 = 1+i\sqrt{3}$$

$$2) z_0 = 1+i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$z_1 = \frac{1}{2}i(1+i\sqrt{3}) = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$$

$$z_2 = -\frac{1}{4}(1+i\sqrt{3}) = \frac{1}{2}\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$

$$z_3 = -\frac{1}{8}i(1+i\sqrt{3}) = \frac{1}{8}(\sqrt{3}-i) = \frac{1}{4}e^{-i\frac{\pi}{6}}$$

$$z_4 = \frac{1}{16}(1+i\sqrt{3}) = \frac{1}{8}e^{i\frac{\pi}{3}}$$

$$4) OM_n = |z_n| = \frac{1}{2^n} \times |z_0| = \frac{2}{2^n}$$

$$5) a) M_n M_{n+1} = |z_{n+1} - z_n| = \left|\frac{1}{2}iz_n - z_n\right| = \left|-\frac{2+i}{2}\right| |z_n|$$

$$\text{d'où } M_n M_{n+1} = \frac{\sqrt{5}}{2} \times \frac{2}{2^n} = \frac{\sqrt{5}}{2^n}$$

b) $L_n = \sum_{k=0}^n M_k M_{k+1}$

$$M_n M_{n+1} = \sqrt{5} \times \left(\frac{1}{2}\right)^n$$

$$L_n = \sqrt{5} \left(\frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} \right) = 2\sqrt{5} \left(1 - \left(\frac{1}{2}\right)^{n+1} \right)$$

$$\lim L_n = 2\sqrt{5}$$

$$6) (\overrightarrow{OM}_0; \overrightarrow{OM}_n) = \arg \frac{z_n}{z_0} = \arg \left(\frac{1}{2}i\right)^n$$

$$(\overrightarrow{OM}_0; \overrightarrow{OM}_n) = \frac{n\pi}{2}$$

$$\Rightarrow \frac{n\pi}{2} + 2k\pi = 0$$

Exercice n° 172

$$1) z_A = r e^{i\theta}; z_B = r e^{-i\theta}; z_C = r e^{i3\theta}$$

$$\arg z_C = 2\arg z - \arg \bar{z} = 3\theta + 2k\pi$$

$$2) \begin{cases} z_C \neq z_B \\ z_A \neq z_B \Rightarrow \theta \neq 0 \\ z_A \neq z_C \end{cases}$$

3) a) $|z_A| = |z_B| = |z_C| = r$ alors
A, B et C appartiennent à un
même cercle de centre 0

$$b) AB = |z_B - z_A| = r |e^{-i\theta} - e^{i\theta}|$$

$$AB = 2r |\sin \theta|$$

$$AC = |z_C - z_A| = r |e^{i3\theta} - e^{i\theta}|$$

$$= r |e^{i2\theta} | |e^{i\theta} - e^{-i\theta}|$$

$$AC = r |e^{i\theta} - e^{-i\theta}| = 2r |\sin \theta|.$$

d'où $AC = AB$.

$$4) a) (\overrightarrow{CB}; \overrightarrow{CA}) = \arg \left(\frac{z_A - z_C}{z_B - z_C} \right)$$

$$\arg \left(\frac{e^{i\theta} - e^{i3\theta}}{e^{-i\theta} - e^{i3\theta}} \right) = \arg \frac{e^{i2\theta}}{e^{i\theta} (e^{2i\theta} - e^{-i\theta})}$$

$$\arg \left(e^{i\theta} \times \frac{\sin \theta}{\sin 2\theta} \right) = \arg e^{i\theta} + \arg \frac{\sin \theta}{\sin 2\theta} = \theta + \pi \text{ ou } \theta.$$

b) ABC est équilatéral si et seulement si $\text{mes}(\overrightarrow{CB}; \overrightarrow{CA}) = \frac{\pi}{3}$ alors l'ensemble est un cercle

Exercice n° 173

$$z_Q = a \pm i\sqrt{2} \pm -i\sqrt{2}$$

$$1) a) z_R = a + \bar{a} = 2 \operatorname{Re}(a)$$

l'affixe de R étant réel, nous en déduisons que $\operatorname{Re}(0; \vec{u})$.

Construire Q' d'affixe \bar{a} symétrique de Q par rapport à $(0; \vec{u})$. Construire le parallélogramme dont deux côtés consécutifs sont $[OQ]$ et $[OQ']$. Le quatrième sommet est R.

$$b) \frac{z_Q - z_0}{z_R - z_0} = \frac{z_Q}{z_R} \in \mathbb{R} \Leftrightarrow$$

$$\frac{z_Q}{z_R} = \sqrt{\frac{z_Q}{z_R}} \Rightarrow \frac{a}{a + \bar{a}} = \frac{\bar{a}}{a + \bar{a}}$$

$\Rightarrow a = \bar{a}$ ($a + \bar{a} \neq 0 \Rightarrow a \in \mathbb{R}$)
Or les points Q du cercle (C) dont les affixes réelles ont comme affixes $-\sqrt{2}$ et $\sqrt{2} \Rightarrow a = -\sqrt{2}$ ou $a = \sqrt{2}$.

$$2) z_P = ia \text{ et } z_H = \bar{z}$$

$$a) z_Q = a \Rightarrow z_P = i z_Q \Rightarrow z_P = e^{i\frac{\pi}{2}} z_Q$$

$$b) \frac{z_H - z_A}{z_P - z_A} \in \mathbb{R} \Rightarrow \frac{z_H - z_A}{z_P - z_A} = \frac{\overline{z_H - z_A}}{\overline{z_P - z_A}}$$

$$\Rightarrow \frac{\bar{z} - 1}{ia - 1} = \frac{\bar{z} - 1}{-i\bar{a} - 1}$$

$$\Rightarrow (\bar{z} - 1)(-i\bar{a} - 1) - (ia - 1)(\bar{z} - 1) = 0$$

$$\Rightarrow (i\bar{a} + 1)\bar{z} + (ia - 1)\bar{z} = i(a + \bar{a}).$$

$$\text{c)} (AP) \perp (OM) \Leftrightarrow \frac{z_P - z_A}{z_M - z_O} \in i\mathbb{R}$$

$$\left(\frac{z_P - z_A}{z_M} \right) = - \left(\frac{z_P - z_A}{z_M} \right)$$

$$\Rightarrow -\frac{i\bar{a}+1}{\bar{z}} = -\frac{i\bar{a}+1}{z}$$

$$\Rightarrow (-i\bar{a}-1)z = (-i\bar{a}+1)\bar{z}$$

d'où $(AP) \perp (OM) \Rightarrow (i\bar{a}+1)z - (i\bar{a}-1)\bar{z} = 0$

$$\text{d)} A, P et H sont alignés alors$$

$$(-\bar{a}+1)z_H + (i\bar{a}-1)\bar{z}_H = i(a+\bar{a}).$$

$$\text{et} (AP) \perp (OH) \Rightarrow (i\bar{a}+1)z_H - (i\bar{a}-1)\bar{z}_H = 0$$

$$\Rightarrow i(\bar{a}+1)z_H + (i\bar{a}-1)\bar{z}_H = i(a+\bar{a})$$

$$\Rightarrow i(\bar{a}+1)z_H - (i\bar{a}-1)\bar{z}_H = 0$$

$$\Rightarrow z_H = \frac{i(a+\bar{a})}{2(i\bar{a}+1)}$$

$$\text{3) } z_N = \frac{a+\bar{a}}{i\bar{a}+1}$$

$$\text{a) } z_H = \frac{i}{2} z_N \Rightarrow z_N = -2i z_H$$

$$\Rightarrow z_N = 2e^{\frac{-i\pi}{2}} z_H$$

b) N est l'image de H par une similitude directe de centre O, de rapport 2 et d'angle $-\frac{\pi}{2}$.

Exercice n° 174

$$\text{1) } z_A = 2-2i; z_B = 2+2i; z_C = -2+2i$$

$$\text{2) } r(A) = B \quad r = \begin{cases} z_M = 2, r = 2 \end{cases}$$

$$\text{a) } r: z' = iz = e^{\frac{i\pi}{2}} z$$

$$\text{b) } r(B) = C \Rightarrow z_C = iz_B.$$

Corrigés

c) $(P') = r(P)$ donc (P') est un cercle de centre $z_L' = 2i$ et de rayon 2.

$$\text{3) a) } z_M = |z_H - z_M| = |2ie^{i\alpha}| = 2$$

alors $M \in (P)$.

$$\text{b) } z_M' = iz_M = i(2+2ie^{i\alpha}) = 2i-2e^{i\alpha}$$

$$\text{c) } \bar{z} = \overrightarrow{z_B M} = z_M - z_B = -2i+2e^{i\alpha}$$

$$\overline{v} = \overrightarrow{z_B M'} = z_M' - z_B = -2-2e^{i\alpha}$$

$$\text{4) a) } \cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2} \Rightarrow 2\cos \alpha = e^{i\alpha} + e^{-i\alpha}$$

$$e^{i\alpha} + 1 = 2e^{i\alpha} \cos \alpha.$$

$$\sin \alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2i} \Rightarrow 2i \sin \alpha = e^{i\alpha} - e^{-i\alpha}$$

$$\Rightarrow e^{i\alpha} - 1 = 2i e^{i\alpha} \sin \alpha.$$

$$\text{b) } \frac{u}{v} = \frac{2i(e^{i\alpha}-1)}{-2(e^{i\alpha}+1)} = -i \frac{(2ie^{\frac{i\alpha}{2}} \sin \frac{\alpha}{2})}{2e^{\frac{i\alpha}{2}} \cos \frac{\alpha}{2}}$$

$$\text{d'où } \frac{u}{v} = \tan \frac{\alpha}{2}.$$

$$\text{c) } \frac{u}{v} = \frac{z_M - z_B}{z_M' - z_B} = \tan \frac{\alpha}{2} \in \mathbb{R} \text{ alors}$$

M, M' et B sont alignés.

$$\text{5) b) } z_M = 2+2i e^{\frac{i\pi}{3}} = 2\sqrt{3} + i$$

Exercice n° 175

$$\text{1) a) } |a| = \sqrt{3} \text{ donc } A \in (\mathbb{C})$$

$$\text{2) a) } \Delta = (2i\sqrt{3})^3 + 24i\sqrt{2} = 12(-1+2i\sqrt{2})$$

$$\Delta = 12a^2.$$

$$\text{b) } \delta = 2\sqrt{3}a = 2\sqrt{3}(1+i\sqrt{2})$$

$$z = \sqrt{3}[-1+i(1-\sqrt{2})]$$

$$z_2 = \sqrt{3} [1 + i(1 + \sqrt{2})]$$

$$\text{1) a) } \frac{z_1 + z_2}{2} = i\sqrt{3} = z_K$$

$$\text{b) } \frac{z_2 - z_1}{2} = 2\sqrt{3}$$

$$\text{c) } \frac{z_{M_2} - z_{M_1}}{2} = 2\sqrt{3} \text{ alors}$$

$\overrightarrow{z_A - z_0}$
 M_1, M_2 et OA sont colinéaires
 donc M_1, M_2, O et A sont alignés.

$$\text{d) } M_1 M_2 = |z_2 - z_1| = |2\sqrt{3} + i\sqrt{6}|$$

$$M_1 M_2 = 6$$

3) les points M_1 et M_2 appartiennent à la droite (OA) passant par K et le cercle de centre K et de rayon 3.

Exercice n° 46

$$f(z) = az^3 + bz^2 + cz$$

$$\text{1) } f(1) = -3 + 4i \Rightarrow a + b + c = -3 + 4i$$

$$f(i) = -4 - 3i \Rightarrow -ia - b + ic = -4 - 3i$$

$$f(-i) = ia - b - ic = 10 + 5i$$

$$\left. \begin{array}{l} a + b + c = -3 + 4i \\ -ia - b + ic = -4 - 3i \end{array} \right\} (L_1)$$

$$\left. \begin{array}{l} ia - b - ic = 10 + 5i \end{array} \right\} (L_3)$$

$$-L_3 + L_1 \Rightarrow b = -3 - i \quad (1)$$

$$L_3 - L_2 \Rightarrow a = c + 4 - 7i \quad (2)$$

En remplaçant b et a dans (L_1)
 on a: $c = -2 + 6i$

$$\Rightarrow a = 2 - i$$

$$f(z) = (z - i)^3 + (-3 - i)z + (-2 + 6i)$$

$$\text{2) } f(z) = 0$$

$$\Rightarrow z = 0 \text{ ou } (z - i)^2 + (-3 - i)z - 2 + 6i = 0$$

$$\Delta = -50i = (5 - 5i)^2$$

$$z_1 = 2, z_2 = -1 + i$$

$$S' = \{0, 2, -1 + i\}$$

GENERALITES

Exercice n° 01

$$\begin{cases} f(x) = \frac{x^2+x-2}{x-1} = x+2 & \forall x \neq 1 \\ f(x) = 2. & \forall x = 1. \end{cases}$$

$f(1) = 3 \neq x+2$ et $f(1) = 2 \forall x=1$
d'où f n'est pas continue sur \mathbb{R}

Exercice n° 2

$2-m=0 \Rightarrow m=2$ alors f est continue sur \mathbb{R} .

Exercice n° 3

a) $Df = \mathbb{R} \setminus \{-2, 2\}$

$$\lim_{x \rightarrow +\infty} f(x) = \lim_{x \rightarrow -\infty} f(x) = \frac{1}{2}$$

$$\lim_{x \rightarrow -2^-} f(x) = -\infty \text{ et } \lim_{x \rightarrow -2^+} f(x) = +\infty$$

$$\lim_{x \rightarrow 2^-} f(x) = -\infty \text{ et } \lim_{x \rightarrow 2^+} f(x) = +\infty$$

b) $Df = \mathbb{R} \setminus \{-1; 1\}$

$$\lim_{x \rightarrow +\infty} f(x) = \lim_{x \rightarrow -\infty} f(x) = 1$$

$$\lim_{x \rightarrow -1^-} f(x) = +\infty \text{ et } \lim_{x \rightarrow -1^+} f(x) = -\infty$$

$$\lim_{x \rightarrow 1^-} f(x) = -\infty \text{ et } \lim_{x \rightarrow 1^+} f(x) = +\infty$$

c) $Df = \mathbb{R} \setminus \{-5; 5\}$

$$\lim_{x \rightarrow +\infty} f(x) = \lim_{x \rightarrow -\infty} f(x) = 1$$

$$\lim_{x \rightarrow -5^-} f(x) = +\infty \text{ et } \lim_{x \rightarrow -5^+} f(x) = -\infty$$

$$\lim_{x \rightarrow 5^-} f(x) = -\infty \text{ et } \lim_{x \rightarrow 5^+} f(x) = +\infty$$

Exercice n° 4

a) $\lim_{x \rightarrow -1} \frac{1+x}{x^2-1} = \lim_{x \rightarrow -1} \frac{1}{x-1} = -\frac{1}{2}$

b) $\lim_{x \rightarrow 2} \frac{\sqrt{x+2}-\sqrt{3x-2}}{x-2} = \lim_{x \rightarrow 2} \frac{x+2-3x+2}{(x-2)(\sqrt{x+2}+\sqrt{3x-2})}$

Corrigés

$$\lim_{x \rightarrow -2} \frac{\sqrt{x+2}-\sqrt{3x-2}}{x-2} = -\frac{1}{2}$$

$$c) \lim_{x \rightarrow 0} \frac{\sqrt{x^2+1}-1}{x^2} = \lim_{x \rightarrow 0} \frac{x^2}{x^2(\sqrt{x^2+1}+1)} = \frac{1}{2}$$

d)

$$\lim_{x \rightarrow 1} \frac{\sqrt{3+x}-\sqrt{5-x}}{\sqrt{2x+7}-\sqrt{10-x}} = \lim_{x \rightarrow 1} \frac{(3+x)-\sqrt{5-x})(\sqrt{3+x}+\sqrt{5-x})(\sqrt{2x+7}+\sqrt{10-x})}{(2x+7)-10+x} =$$

$$= \lim_{x \rightarrow 1} \frac{(3+x)-5+x)(\sqrt{2x+7}+\sqrt{10-x})}{(2x+7)-10+x} = 1$$

$$e) \lim_{x \rightarrow 3} \frac{\sqrt{x+1}-2}{\sqrt{x^2-x-6}} = \lim_{x \rightarrow 3} \frac{\sqrt{x^2-x-6}}{(x+2)(\sqrt{x+1}+2)} = 0$$

$$f) \lim_{x \rightarrow -2} \frac{x+2}{\sqrt{x^2+x-2}} = \lim_{x \rightarrow -2} \frac{\sqrt{x^2+x-2}}{x-1} = 0$$

Exercice n° 5

a) $Df =]-\infty, 1]$; il n'existe pas de limite en $+\infty$

b) $Df = [1; +\infty[$; $\lim_{x \rightarrow +\infty} f(x) = +\infty$

c) $Df = [-\frac{1}{2}; +\infty[$

$$\begin{aligned} \lim_{x \rightarrow +\infty} f(x) &= \lim_{x \rightarrow +\infty} \frac{2x+1-x-1}{\sqrt{2x+1}+\sqrt{x+1}} \\ &= \lim_{x \rightarrow +\infty} \frac{\sqrt{x}}{\sqrt{2+\frac{1}{x}}+\sqrt{1+\frac{1}{x}}} = +\infty \end{aligned}$$

d) $Df = [1; +\infty[$

$$\lim_{x \rightarrow +\infty} f(x) = \lim_{x \rightarrow +\infty} \frac{-2}{\sqrt{x-1}+\sqrt{x+1}} = 0$$

Exercice n° 6

a) $\lim_{x \rightarrow -\infty} f(x) = \lim_{x \rightarrow -\infty} -x \sqrt{2-\frac{1}{x}+\frac{3}{x^2}} = +\infty$

b) $\lim_{x \rightarrow +\infty} f(x) = \lim_{x \rightarrow +\infty} x \sqrt{2-\frac{1}{x}+\frac{3}{x^2}} = +\infty$

b) $\lim_{x \rightarrow -\infty} f(x) = \lim_{x \rightarrow -\infty} x(2-\sqrt{1+\frac{1}{x^2}}) = -\infty$

c) $\lim_{x \rightarrow +\infty} f(x) = \lim_{x \rightarrow +\infty} x(2+\sqrt{1+\frac{1}{x^2}}) = +\infty$

c) $\lim_{x \rightarrow -\infty} f(x) = \lim_{x \rightarrow -\infty} \frac{4}{x+\sqrt{x^2-4}} = 0$

$$\lim_{n \rightarrow +\infty} f(n) = 0$$

$$d) \lim_{n \rightarrow +\infty} f(n) = \lim_{n \rightarrow +\infty} \left(\sqrt{1 + \frac{1}{n^2}} - \frac{1}{n} \right) = 1$$

$$\lim_{n \rightarrow -\infty} f(n) = \lim_{n \rightarrow -\infty} \left(-\sqrt{1 + \frac{1}{n^2}} - \frac{1}{n} \right) = -1$$

Exercice n° 7

a) $Df = \mathbb{R} \setminus \{0\}$

$x=0$ est une asymptote verticale

$f(x) = \frac{1}{2}x + \frac{x+4}{2x^2}$; $y = \frac{1}{2}x$ est une asymptote oblique à la courbe (bf) .

b) $Df = \mathbb{R} \setminus \{1\}$

$x=1$ est une asymptote verticale

$y=x+2$ est une asymptote oblique à la courbe (bf) en $+\infty$ et $y=-x-2$ est une asymptote oblique à la courbe (bf) en $-\infty$.

c) $Df =]-\infty; -1] \cup]1; +\infty[$

$x=1$ est une asymptote verticale

$y=x+1$ est une asymptote oblique à la courbe (bf) .

d) $Df =]-\infty; 0] \cup]1; +\infty[$.

$x=1$ est une asymptote verticale

$y = \frac{x+1}{x^2}$ est une asymptote oblique à la courbe (bf) en $+\infty$ et $y = -x - \frac{1}{2}$ est une asymptote oblique à la courbe (bf) en $-\infty$.

Exercice n° 8

1) La fonction f est continue sur $[1; +\infty[$ et $g([1; +\infty[) = [0; +\infty[$.

La fonction \sqrt{x} est continue sur $[0; +\infty[$.

La fonction $x-2$ est continue sur \mathbb{R} et $[0; +\infty[\subset \mathbb{R}$ donc f étant la composition des fonctions continues sur \mathbb{R} , $[0; +\infty[$ et $[1; +\infty[$ alors elle est continue sur $[1; +\infty[$.

2) $\sqrt{x-1} \geq 0 \Rightarrow \sqrt{x-1} - 2 \geq -2 \Rightarrow f(x) \geq -2$

3) $f([1; +\infty[) \subset [-2; +\infty[$; reciprocement

$$4) \beta \in [-2; +\infty[\text{, il existe } x / \sqrt{x-1} - 2 = \beta$$

$$\Rightarrow x = (\beta + 2)^2 + 1 \Rightarrow \beta = f(x) \text{ donc}$$

$[-2; +\infty[\subset f([1; +\infty[)$ par suite

$$f([1; +\infty[) = [-2; +\infty[.$$

Exercice n° 9

$$1) f'(x) = 1 + \frac{1}{2\sqrt{x}} \Rightarrow f(y) = 1 + \frac{1}{2\sqrt{y}}$$

$$-1 < \sqrt{y} < 2 \Rightarrow \frac{1}{4} < \frac{1}{2\sqrt{y}} < \frac{1}{2} \Rightarrow \frac{5}{4} < f'(y) < \frac{3}{2}$$

$$3) \frac{5}{4}(x-1) + 2 \leq f(x) \leq \frac{3}{2}(x-1) + 2.$$

$$4) \frac{5}{4}(x-4) \leq f(x) - f(4) \leq \frac{3}{2}(x-4)$$

$$-\frac{3}{2}(x-4) \leq \frac{5}{4}(x-4) \leq f(x) - 6 \leq \frac{3}{2}(x-4)$$

$$|f(x) - 6| \leq \frac{3}{2}|x-4|.$$

Exercice n° 12

$$1) f(1) = 0 ; 2) f(x) = (x-1)(4x-3)(2x+1)$$

$$3) S = \{-\frac{1}{2}; \frac{3}{4}; 1\}$$

$$4) \ln x = 1 \text{ ou } \ln x = \frac{3}{4} \text{ ou } \ln x = -\frac{1}{2}$$

$$S = \{e^{-\frac{1}{2}}; e^{\frac{3}{4}}; e^1\}$$

Exercice n° 13

$$1) P(2) = 8 - 4t - 8 + 4 = 0$$

$$2) a) S = \{-2; 1; 2\}.$$

$$3) a) \begin{cases} \ln x = -2 \\ \ln x = 1 \\ \ln x = 2 \end{cases} \Rightarrow \begin{cases} x = e^{-2} \\ x = e \\ x = e^2 \end{cases}$$

$$b) e^x = 1 \text{ ou } e^x = 2 \Rightarrow S = \{0; \ln 2\}$$

Exercice n° 14, 15 et 16 voir exo 13

Exercice n° 17

$$1) P(x) = x^4 - x^3 + ax^2 + bx + c$$

$$P(2) = 0 \Rightarrow \begin{cases} 8 + 4a + 2b + c = 0 \end{cases}$$

$$P'(2) = 0 \Rightarrow \begin{cases} 20 + 4a + b = 0 \end{cases}$$

$$P''(2) = 0 \Rightarrow \begin{cases} 36 + 2a = 0 \end{cases}$$

$$a = -18; b = 52 \text{ et } c = -40$$

Corrigés

2) $P(x) = (x-2)^3(x+5)$

3) $P(x) = 0 \Rightarrow S = \{-5; 2\}$.

Exercice n° 18

1) $f'(x) = -9(4-3x)^2$

2) $f'(x) = 3(4x^3-2x)(x^4-x^2+1)^2$

3) $f'(x) = 5(-6x+5)(2x-1)(4-3x)^2$

4) $f'(x) = \frac{(x-2)^2(8x+23)}{(4x+5)^2}$

5) $f'(x) = \frac{-30(3x-1)^2}{(2x-4)^4}$

6) $f'(x) = \frac{8x^2-1}{\sqrt{4x^2-1}}$

7) $f'(x) = \frac{2\sqrt{x-1}}{(x-1)(x+3)\sqrt{x+3}}$

8) $f'(x) = -4\sin x \cos^3 x$

9) $f'(x) = -4x^3 \sin^5 x^4$

10) $f'(x) = \frac{-4\sin 4x - 4\cos 4x + 4}{(1-\cos 4x)^2}$

Exercice n° 20

1) $\forall x \in \mathbb{R}, \frac{1-\cos x}{x^2} = \frac{1-\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}}{x^2}$
 $= \frac{\left(\frac{1}{2}(1-\cos x)\right)^2 + \frac{1}{2}(1+\cos x)}{x^2} = \left(\frac{\sin \frac{x}{2}}{x}\right)^2$

donc $\lim_{x \rightarrow 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$.

2) a) $\lim_{x \rightarrow 0} \frac{x^3}{1-\cos x} = \lim_{x \rightarrow 0} x \times \frac{x^2}{1-\cos x} = 0$

b) $\lim_{x \rightarrow 0} \frac{\sin^2 x}{\cos x - 1} = \lim_{x \rightarrow 0} -\left(\frac{\sin x}{x}\right)^2 \times \frac{x^2}{1-\cos x} = 0$

c) $\lim_{x \rightarrow 0} \frac{\sqrt{1-\cos x}}{\sin x} = \lim_{x \rightarrow 0} \sqrt{\frac{1-\cos x}{x^2}} = \lim_{x \rightarrow 0} \frac{1}{\sqrt{x}}$

$\lim_{x \rightarrow 0} \frac{\sqrt{1-\cos x}}{\sin x} = +\frac{\sqrt{2}}{2}$

$\lim_{x \rightarrow 0} \frac{\sqrt{1-\cos x}}{\sin x} = -\frac{\sqrt{2}}{2}$.

d) $\lim_{x \rightarrow 0} \frac{\cos^2 x - 1}{x \tan x} = \lim_{x \rightarrow 0} -\frac{(1+\cos x) \times \frac{1-\cos x}{x^2} \times \frac{x}{\tan x}}{x^2}$

$\lim_{x \rightarrow 0} \frac{\cos^2 x - 1}{x \tan x} = -1.$

Exercice n° 21

1) $(1-\cos x) \sin^2 x = \frac{1-\cos 2x}{2} - \cos x \sin^2 x$

$I = \int_0^{\frac{\pi}{2}} \left(\frac{1}{2} - \frac{1}{2} \cos 2x - \cos x \sin^2 x \right) dx$
 $= \left[\frac{1}{2}x - \frac{1}{4} \sin 2x - \frac{1}{3} \sin^3 x \right]_0^{\frac{\pi}{2}} = \frac{3\pi - 4}{12}$

2) $\sin^3 x \cos^2 x = \sin x (1-\cos^2 x) \cos^2 x$
 $= \sin x \cos^2 x - \sin x \cos^4 x$.

$J = \left[-\frac{1}{3} \cos^3 x + \frac{\cos^5 x}{5} \right]_0^{\frac{\pi}{2}} = \frac{2}{15}$

Exercice n° 22

1) $A = \int_0^1 (2x+1) e^{2x} dx$

$\begin{cases} U = 2x+1 & U' = 2 \\ V = e^{2x} & V = \frac{1}{2} e^{2x} \end{cases}$

$A = \left[\frac{1}{2}(2x+1)e^{2x} - \frac{1}{2}e^{2x} \right]_0^1 = [xe^{2x}]_0^1 = e^2$

2) $B = \int_1^e \sqrt{u} \ln u du$

$\begin{cases} U = \ln u & U' = \frac{1}{u} \\ V = \sqrt{u} & V = \frac{2}{3}u^{1/2} \end{cases}$

$B = \left[\frac{2}{3}u \ln u \sqrt{u} - \frac{4}{9}u \sqrt{u} \right]_1^e = \frac{4}{9}(2e^3 - 1)$

3) $C = \int_e^{e^2} \ln \frac{x^3}{x^2-1} dx$

$\begin{cases} U = \ln \frac{x^2}{x^2-1} & U' = \frac{2}{x(x^2-1)} \\ V = 1 & V = u \end{cases}$

$C = \left[u \ln \frac{x^2}{x^2-1} \right]_e^{e^2} + \left[\ln \left(\frac{u-1}{u+1} \right) \right]_e^{e^2}$

Exercice n° 24

Corrigés

$$1) f(u) = u^2 + 2u + 3 - \frac{1}{u+1}$$

$$2) \int_0^3 f(u) du = \left[\frac{1}{3}u^3 + u^2 + 3u - \ln(u+1) \right]_0^3$$

$$\int_0^3 f(u) du = 25,613.$$

Exercice n° 25

$$1) a) (\cos^2 u + \sin^2 u)^2 = \cos^4 u + \sin^4 u + 2\cos^2 u \sin^2 u$$

$$(\cos^2 u + \sin^2 u)^2 = 1 \text{ et } 2\sin u \cos u = \sin 2u$$

alors $1 = \cos^4 u + \sin^4 u + \frac{1}{2} \sin^2 2u$

$$\cos^4 u + \sin^4 u = 1 - \frac{1}{2} \sin^2 2u = \frac{3}{2} + \cos^2 u$$

2) a) les fonctions $u \mapsto \cos^4 u$ et $u \mapsto \sin^4 u$ sont continues sur $[0, \frac{\pi}{8}]$ donc sont intégrables sur cet intervalle d'où I et J existent.

$$b) I + J = \int_0^{\frac{\pi}{8}} (\cos^4 u + \sin^4 u) du$$

$$= \int_0^{\frac{\pi}{8}} \frac{1}{4} (3 + \cos 2u) du = \frac{3\pi/8 + 3}{32}$$

$$c) I - J = \int_0^{\frac{\pi}{8}} \cos 2u du = \frac{\sqrt{2}}{4}$$

$$d) \begin{cases} I + J = \frac{3\pi/8 + 3}{32} \\ I - J = \frac{\sqrt{2}}{4} \end{cases} \Rightarrow \begin{cases} I = \frac{3\pi/8 + 2 + 8\sqrt{2}}{64} \\ J = \frac{3\pi/8 - 2 - 8\sqrt{2}}{64} \end{cases}$$

Exercice n° 26

$$1) f'(u) = -e^{-2u} (2\sin 3u + 3\cos 3u)$$

$$g'(u) = e^{-2u} (-2\sin 3u + 3\cos 3u)$$

$$2) a) f'(u) = 2f(u) - 3g(u)$$

$$g'(u) = 3f(u) - 2g(u)$$

$$b) \begin{cases} f' = -2f - 3g \\ g' = 3f - 2g \end{cases} \Rightarrow \begin{cases} f = -\frac{2}{13}f' + \frac{3}{13}g' \\ g = -\frac{3}{13}f' - \frac{2}{13}g' \end{cases}$$

$$3) I = \int_0^{\frac{\pi}{6}} f(u) du = \int_0^{\frac{\pi}{6}} \left(-\frac{2}{13}f'(u) + \frac{3}{13}g'(u) \right) du$$

$$I = \left[-\frac{2}{13}f(u) + \frac{3}{13}g(u) \right]_0^{\frac{\pi}{6}} = \frac{2}{13} + \frac{3}{13}e^{-\frac{\pi}{3}}$$

$$\text{de même. } J = \frac{3}{13} - \frac{2}{13}e^{-\frac{\pi}{3}}.$$

Exercice n° 27

$$1) I - J = \int_0^{\frac{\pi}{2}} (\cos^2 u - \sin^2 u) du = \left[\frac{1}{2} \sin 2u \right]_0^{\frac{\pi}{2}}$$

$$I - J = 0$$

$$I + J + K = \int_0^{\frac{\pi}{2}} (\cos^2 u + \sin^2 u)^2 du = \frac{\pi}{2}$$

$$2) \cos 4u = \cos^2 u - \sin^2 u$$

$$= (\cos^2 u - \sin^2 u)^2 - 4\cos^2 u \sin^2 u$$

$$\cos 4u = \cos^4 u + \sin^4 u = 6\cos^2 u \sin^2 u$$

$$I + J + 3K = \int_0^{\frac{\pi}{2}} \cos 4u du = 0$$

$$3) \begin{cases} I - J = 0 \\ I + J + K = \frac{\pi}{2} \\ I + J - 3K = 0 \end{cases} \Rightarrow \begin{cases} I = \frac{3\pi}{16} \\ J = \frac{3\pi}{16} \\ K = \frac{\pi}{8} \end{cases}$$

Exercice n° 28

$$1) F(x) = -\frac{1}{4}(2-3x)^4 + C$$

$$2) F(x) = \sin x + 5\cos x + C$$

$$3) f(x) = \frac{1}{x^2} + \frac{1}{x^3} - \frac{1}{x^4}$$

$$F(x) = -\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + C$$

$$4) F(x) = 4\sqrt{x} - x + C.$$

Exercice n° 29

$$1) F(x) = \frac{1}{2} \sin^2 x + \frac{1}{2}$$

$$2) F(x) = \frac{1}{6} \sin^6 x + 3$$

$$3) F(x) = -\cos x^2 + 3$$

$$4) F(x) = \frac{1}{2} \ln(\tan \frac{x}{2}) + 3$$

Exercice n° 30

$$1) S = \{34\}, 2) S = \{04\}, 3) S = \{4\}$$

$$4) S = \{14\}, 5) S = \{54\}.$$

Exercice n° 31 (Voir exo 30)

Les méthodes de résolutions

Exercice n°32

$$1) 3x^2 - 5x + 2 = 0 \Rightarrow 3(x-1)(x-\frac{2}{3}) = 0$$

$$\begin{cases} \ln x = 1 \Rightarrow x = e \\ \ln x = \frac{2}{3} \Rightarrow x = e^{\frac{2}{3}} \end{cases} \Rightarrow S = \{e, e^{\frac{2}{3}}\}$$

$$2) S = \{\frac{1}{e}, 4\}; 3) S = \{e^{-1}, \frac{1}{e^{-1}}, e^{\frac{1}{e-1}}\}$$

$$4) S = \{e^x\}$$

Exercice n°35

$$1) x^2 + x - 2 = (x+2)(x-1) = 0$$

$$\begin{cases} e^x = -2 \text{ impossible} \\ e^x = 1 \Rightarrow x = 0 \end{cases}$$

$$2) e^{2x+1} + 3e^{x+1} - 4e = 0$$

$$e^{2x} + 3e^x - 4 = 0 \Rightarrow S = \{0\}$$

$$3) e^{-2x+3} = 1 \Rightarrow -2x+3 = 0 \Rightarrow x = \frac{3}{2}$$

$$4) e^{\sin x} = \sqrt{e} = e^{\frac{1}{2}} \Rightarrow \sin x = \sin \frac{\pi}{6}$$

$$x = \frac{\pi}{6} + 2k\pi \text{ ou } x = \frac{5\pi}{6} + 2k\pi.$$

$$5) 2e^x - 2e^{-x} - 3 = 0 \quad 2e^{2x} - 3e^x - 2 = 0$$

$$x = \ln 2.$$

Exercice n°36

$$1) 2^{2x+3} - 3 \cdot 2^{x+1} + 1 = 0$$

$$2^{2x} \cdot 2^3 - 3 \cdot 2^x \cdot 2 + 1 = 0$$

$$8x^2 - 6x + 1 = 0 \Rightarrow \begin{cases} x_1 = \frac{1}{2} \\ x_2 = \frac{1}{4} \end{cases}$$

$$\begin{cases} x = -1 \\ x = -2 \end{cases} \Rightarrow S = \{-2, -1\}$$

$$2) 4^{\frac{2\ln x - 1}{\ln x}} - 5 \cdot 4^{\frac{\ln x}{\ln x}} + 16 = 0$$

$$\frac{4^{\frac{2\ln x}{\ln x}}}{4} - 5 \cdot 4^{\frac{\ln x}{\ln x}} + 16 = 0$$

$$x^2 - 20x + 64 = 0$$

$$\begin{cases} 4^{\ln x} = 4 \\ 4^{\ln x} = 4 \end{cases} \Rightarrow S = \{e, e^2\}$$

Corrigés

$$5) 6^{2\sqrt{x}} + 5 \cdot 6^{1+\sqrt{x}} - 6^3 = 0$$

$$x^2 + 30x - 6^3 = 0$$

$$\begin{cases} 6^{\sqrt{x}} = -6^2 \text{ impossible} \\ 6^{\sqrt{x}} = 6^1 \Rightarrow x = 1. \end{cases}$$

Exercice n°37

$$a) \lim_{n \rightarrow +\infty} \frac{e^n}{n} \times \frac{1}{1+\frac{1}{n}} = +\infty$$

$$b) \lim_{n \rightarrow +\infty} \frac{e^n}{n} \times \sqrt{n} = +\infty$$

$$c) \lim_{n \rightarrow +\infty} \frac{\ln n}{n} \times \frac{n}{e^n} = 0$$

$$d) \lim_{n \rightarrow +\infty} n e^{-n} = 0 \quad e) \lim_{n \rightarrow -\infty} e^n \sin x = 0$$

$$f) \lim_{n \rightarrow 0} \frac{\sin x}{n} \times \frac{n}{1-e^n} = -1$$

$$g) \lim_{x \rightarrow 0} \frac{2x}{x} (-x-1) = \lim_{x \rightarrow 0} \frac{e^{2x}(e^x-1)}{x} = 1$$

$$h) \lim_{x \rightarrow 0} \frac{e^{x^2}-1}{x} = 0$$

Exercice n°38

$$1) S = \{\ln 3; 0\}; 2) S = \{\ln 5; \ln 6\}$$

$$3) S = \{\ln 2; \ln 2-1\}; (\ln 5; \ln 5-1)$$

$$4) S = \{\ln 2; \ln 5\}$$

Exercice n°39

$$1) S = \{(9; 16); (16; 9)\}$$

$$2) S = \{(1; e-1)\}$$

$$3) S = \{(32; 18)\}; 4) S = \{(\frac{e^2}{2}; \frac{1}{e^3})\}$$

Exercice n°50

$$1) f(x) = ax + b \Rightarrow f'(x) = a \quad \text{et} \quad f''(x) = 0$$

$$50x + 2a + 5b = 2x + 3 \Rightarrow a = \frac{3}{5}; b = \frac{11}{25}$$

$$2) (g-f)'' + 2(g-f)' + 5(g-f) = 0$$

$$g''(x) + 2g'(x) + 5g(x) = f''(x) + 2f'(x) + 5f(x)$$

$$\text{d'où } g \text{ est solution de (E).}$$

$$3) r^2 + 2r + 5 = 0$$

$$\Delta = (2i)^2 \Rightarrow y = (A \cos 2x + B \sin 2x) e^{-2x}$$

les solutions de (E') sont les fonctions $x \mapsto (A \cos 2x + B \sin 2x) e^{-2x}$ avec $A, B \in \mathbb{R}$.

$$4) g(x) - f(x) = (A \cos 2x + B \sin 2x) e^{-2x}$$

$$g(x) = (A \cos 2x + B \sin 2x) e^{-2x} + \frac{2}{5}x + \frac{11}{25}$$

$$f(x) = g(x)$$

$$f'(x) = [(2B - A) \cos 2x - (2A + B) \sin 2x] e^{-2x} + \frac{2}{5}$$

$$f'(0) = 2B - A + \frac{2}{5} \text{ et } f(0) = A + \frac{11}{25}$$

$$\begin{cases} 2B - A + \frac{2}{5} = 1 \\ A + \frac{11}{25} = 1 \end{cases} \Rightarrow \begin{cases} A = \frac{14}{25} \\ B = \frac{28}{50} = \frac{14}{25} \end{cases}$$

Exercice n° 52

$$1) r^2 + 2r + 1 = 0 \Rightarrow r = -1$$

les solutions de (E_0) sont les fonctions

$$x \mapsto (\alpha x + \beta) e^{-x} \quad (\alpha, \beta \in \mathbb{R}).$$

$$2) g'(x) = 2\alpha x + \beta \text{ et } g''(x) = 2\alpha$$

$$g''(x) + 2g'(x) + g(x) = -x^2 - x + 2$$

$$\begin{cases} \alpha = -1 \\ 4\alpha + \beta = -1 \\ 2\alpha + 2\beta + \gamma = 2 \end{cases} \Rightarrow \begin{cases} \alpha = -1 \\ \beta = 3 \\ \gamma = 2. \end{cases}$$

$$3) f(x) - g(x) = (\alpha x + \beta) e^{-x}$$

les solutions de (E_1) sont les fonctions

$$x \mapsto -x^2 - x + 2 + (\alpha x + \beta) e^{-x}$$

$$4) U(x) = -x^2 - x + 2 + (\alpha x + \beta) e^{-x}$$

$$U'(x) = -2x - 1 + (-2x + \alpha - \beta) e^{-x}$$

$$U(0) = -2 + \beta \text{ et } U'(0) = 1 + \alpha - \beta.$$

$$\alpha = -2 \text{ et } \beta = 3.$$

$$U(x) = -x^2 - x + 2 + (-2x - 1) e^{-x}.$$

Exercice n° 54

$$1) h(x) = e^{2x} \text{ et } h'(x) = 2e^{2x} \text{ et } h''(x) = 4e^{2x}$$

$$h'''(x) = 8e^{2x}$$

$$8e^{2x} - 24e^{2x} + 24e^{2x} - 8e^{2x} = 0 \text{ d'où } h$$

est solution de (E) .

$$2) g(x) = f(x) e^{-2x} \Rightarrow f(x) = g(x) e^{2x}$$

$$f'(x) = (2g(x) + g'(x)) e^{2x}$$

$$f''(x) = (4g(x) + 4g'(x) + g''(x)) e^{2x}$$

$$f'''(x) = (8g(x) + 12g'(x) + 6g''(x) + g'''(x)) e^{2x}$$

f solution de (E) équivaut à

$$f'''(x) - 6f''(x) + 12f'(x) - 8f(x) = 0$$

$$g'''(x) e^{2x} = 0 \Rightarrow g'''(x) = 0 \text{ car } e^{2x} \neq 0$$

$$3) g'''(x) = 0 \Rightarrow g''(x) = a \quad g'(x) = ax + b$$

$$g(x) = \frac{1}{2}ax^2 + bx + c \quad c \in \mathbb{R}.$$

$$\text{posons } \frac{d}{dx} = \frac{1}{2}a \Rightarrow g(x) = \frac{1}{2}x^2 + bx + c$$

$$\text{et } g'''(x) = 0.$$

f est solution de (E) avec

$$f(x) = g(x) e^{2x} + (fx^2 + bx + c) e^{2x}.$$

Exercice n° 57

$$1) a) f(x) = \frac{2x}{(x^2 - 1)^2}$$

$$F(x) = -\frac{1}{x^2 - 1} + \ln(x) \quad (x \in \mathbb{R})$$

$$b) g(x) = -\frac{1}{x} + \frac{1}{2} \left(\frac{1}{x+1} \right) + \frac{1}{2} \left(\frac{1}{x-1} \right)$$

$$G(x) = -\ln x + \frac{1}{2} [\ln(x+1) + \ln(x-1)]$$

$$2) I(x) = \frac{1}{3} - \frac{1}{x^2 - 1}$$

ETUDES DES FONCTIONS

Exercice n° 1

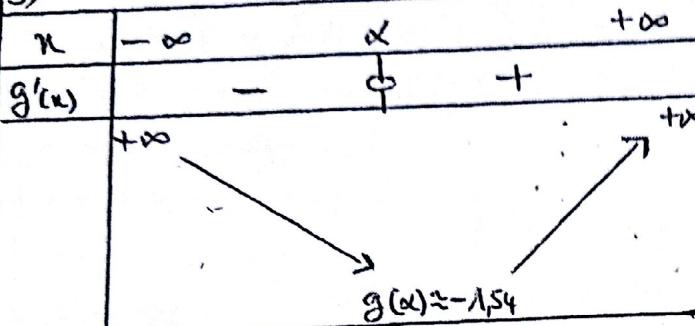
$$1) g'(x) = \frac{1}{4}(x^3 + 4x + 4); g''(x) = \frac{1}{4}(3x^2 + 4) > 0$$

g' est strictement croissante sur \mathbb{R}
 $\lim_{x \rightarrow +\infty} g'(x) = +\infty$ et $\lim_{x \rightarrow -\infty} g'(x) = -\infty$ alors
 g' réalise une bijection de \mathbb{R} vers \mathbb{R} , or
 $0 \in \mathbb{R}$ d'où $g'(x) = 0$ admet une solution

$$2. g'(0) \times g'(-1) < 0 \Rightarrow \alpha \in [-1; 0]$$

$$-0,80 \leq \alpha \leq -0,79$$

3)

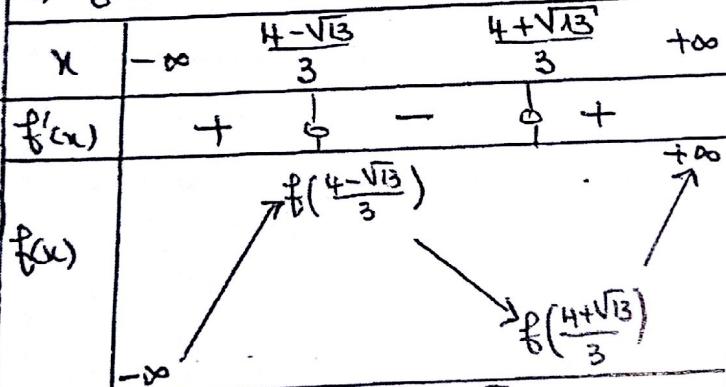


4) $g(x) = 0$ admet deux solutions
 $\alpha_1 \in]-\infty; \alpha]$ et $\alpha_2 \in [\alpha; +\infty[$.

Exercice n° 2

1) Toutes les fonctions polynômes sont continues sur \mathbb{R} .

$$2) f'(x) = 3x^2 - 8x + 1$$

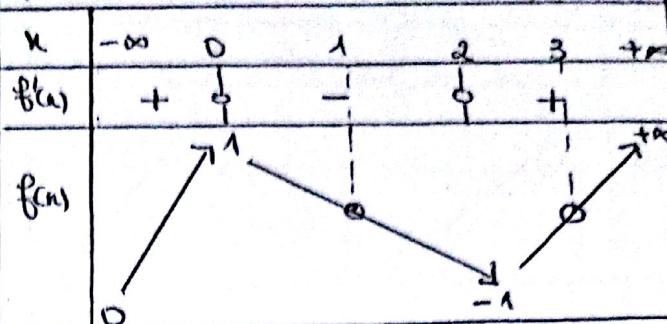


3) $\forall x \in \left[\frac{4+\sqrt{13}}{3}; +\infty\right[$ f est continue dérivable et croissante. de plus
 $f\left(\frac{4+\sqrt{13}}{3}\right) \times \lim_{x \rightarrow +\infty} f(x) < 0$ alors elle réalise une bijection de $\left[\frac{4+\sqrt{13}}{3}; +\infty\right[$ vers $[f\left(\frac{4+\sqrt{13}}{3}\right); +\infty[$. $f(4) \times f(5) < 0$ d'où $f(x) = 0$ admet une unique solution

4. Par balayage $4,05 \leq x \leq 4,06$.

Exercice n° 3

1)

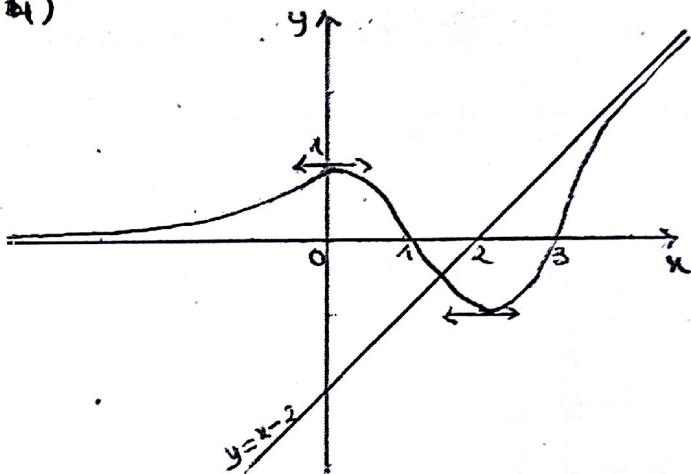


2) $y = 0$ est une asymptote horizontale en $-\infty$ et $y = x - 2$ est une asymptote oblique à la courbe (f) en $+\infty$

$$3) \forall x \in]-\infty; 1] \cup [3; +\infty[f(x) \geq 0$$

$$\forall x \in [1; 3] f(x) \leq 0$$

4)



Exercice n° 4

$$1) f'(0) = a = 4 \text{ et } f(0) = b = 3$$

$$f(x) = \frac{3x^2 + 4x + 3}{x^2 + 1}$$

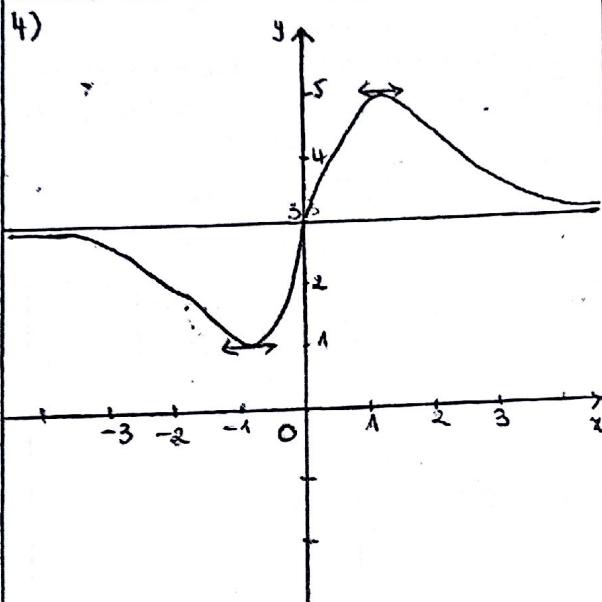
$$2) f(x) - y = \frac{-4x^3}{x^2 + 1}$$

$\forall x \in]-\infty; 0]$ $f(x) - y \geq 0$ alors la courbe est au dessus de la tangente
 $\forall x \in [0; +\infty[f(x) - y \leq 0$ alors la tangente est au dessus de la courbe.

Corrigés

$$f'(x) = \frac{-4(x-1)(x+1)}{(x^2+1)^2}$$

x	$-\infty$	-1	1	$+\infty$
$f'(x)$	-	0	+	0
$f(x)$	3	5	3	



Exercice n°5

$$1) f'(x) = 3ax^2 + 2bx$$

$$2) f(0) = 1 \Rightarrow c = 1$$

$$f(2) = -3 \Rightarrow 8a + 4b + 1 = -3$$

$$f'(0) = 0 \text{ et } f'(2) = 0$$

$$\begin{cases} 8a + 4b = -4 \\ 12a + 4b = 0 \end{cases} \Rightarrow \begin{cases} a = 1 \\ b = -3 \end{cases} \text{ et } c = 1$$

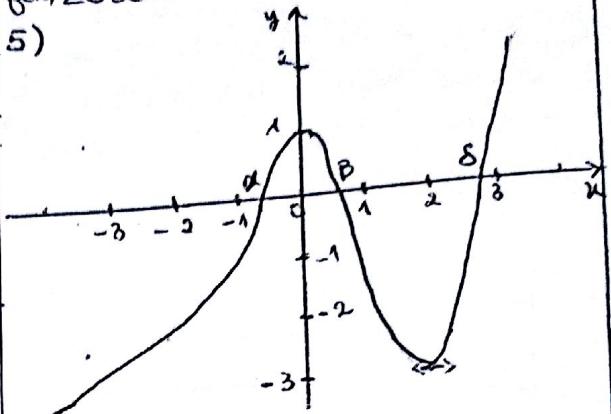
$$3) f(x) = x^3 - 3x^2 + 1$$

$$f'(x) = 3x(x-2)$$

$\forall x \in]-\infty; 0] \cup [2; +\infty[f'(x) \geq 0$ alors f est croissante et $\forall x \in [0; 2] f'(x) \leq 0$ alors f est décroissante

4) En utilisant le théorème de bijection on démontrera que l'équation $f(x) = 0$ admet trois solutions.

5)



Exercice n°6

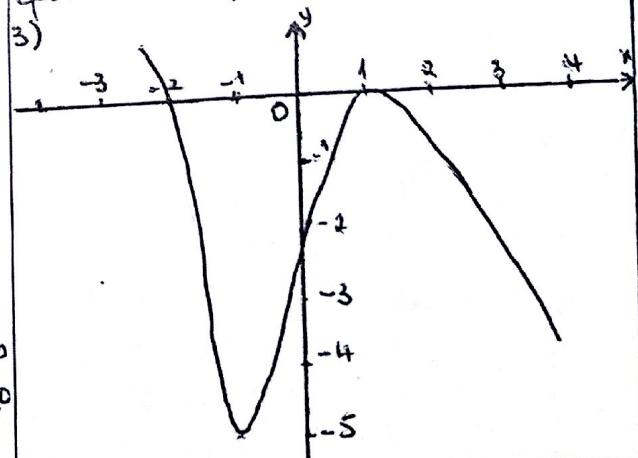
$$1) f'(x) = -3(x-1)(x+1)$$

x	$-\infty$	-1	1	$+\infty$
$f'(x)$	-	0	+	-
$f(x)$	$+\infty$	0	-5	$-\infty$

$$2) f''(x) = 0 \Rightarrow -6x = 0 \Rightarrow x = 0$$

$f(0) = -2 \Rightarrow I(0; -2)$ est un point d'inflexion

3)



Exercice n°7

1) $f'(x) = 3(x+2)^2 > 0$

x	$-\infty$		$+\infty$
$f'(x)$	+	0	-
$f(x)$	$-\infty$		$+\infty$

x	$-\infty$	2	3	4	$+\infty$
$f'(x)$	+	0	-	-	+
$f(x)$	$-\infty$	3	$-\infty$	$+\infty$	$+\infty$

2) $f''(x) = 6x+12 = 0 \Rightarrow x = -2$

$f(-2) = -1 \Rightarrow I(-1)$ est un point d'inflexion.

3) $\forall x \in]-\infty; -1] \quad f(x) \leq 0$
 $\forall x \in [-1; +\infty[\quad f(x) \geq 0$

Exercice n°8

1) $Dg =]-\infty; -1[\cup]-1; 2[\cup]2; +\infty[$

2) $Dg' =]-\infty; -1[\cup]-1; 0[\cup]0; 2[\cup]2; +\infty[$

3) Demi-tangente au point d'abscisse 0: $T_1: y = -x+1$ (à gauche)
 $T_2: x=0$ (à droite)

Tangente au point d'abscisse 1: $y=4$

4) $x=-1; x=2$ sont des asymptotes verticales et $y=-2$ est l'asymptote horizontale.

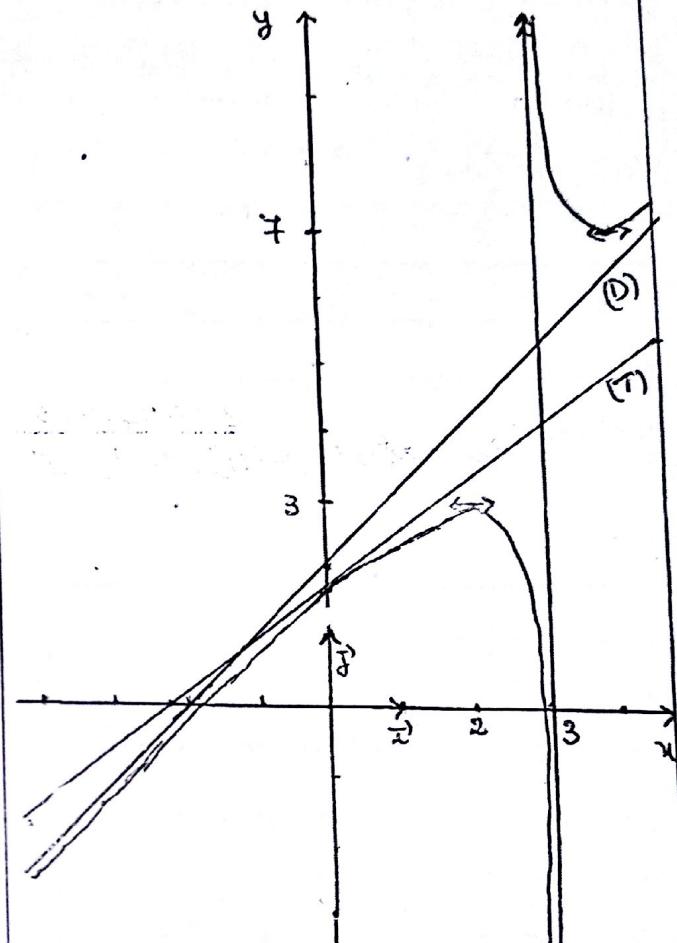
Exercice n°9

1) $Df = \mathbb{R} \setminus \{3\}$; 2) $x=3$ est une asymptote verticale à la courbe (f_f) .
3) $\forall x \in]-\infty; 3]$ la droite (D) est au dessus de la courbe (f_f) et $\forall x \in [3; +\infty[$ la courbe (f_f) est au dessus de (D) .

4) $f'(x) = \frac{(x-4)(x-2)}{(x-3)^2}$

$\forall x \in]-\infty; 2] \cup [4; +\infty[\quad f'(x) \geq 0$

$\forall x \in [2; 3[\cup]3; 4] \quad f'(x) \leq 0$.



6) $(T_1): y = \frac{3}{4}x + \frac{7}{4}$

7) $f'(x_0) = \frac{3}{4} \Rightarrow \frac{1}{(x_0-3)^2} = \frac{1}{4}$
 $x_0 = 1$ ou $x_0 = 5$

8) $x^2 - (m+1)x + 3m - 5 = 0$

$\Rightarrow m = \frac{x^2 - x - 5}{x-3} = f(x)$. Puisque $y=m$ les solutions sont les abscisses des points d'intersection de la courbe (f_f) avec la droite $y=m$.

Exercice n° 10

$$f(x) = \begin{cases} \frac{x^2-8}{x^2+1} & \text{si } x \leq 2 \\ m(x^2-6) & \text{si } x > 2 \end{cases}$$

$$\lim_{x \rightarrow 2^+} f(x) = \lim_{x \rightarrow 2^+} f(x) \Rightarrow -\frac{4}{5} = -2m$$

$$m = \frac{2}{5} \Rightarrow \begin{cases} f(x) = \frac{x^2-8}{x^2+1} & \text{si } x \leq 2 \\ f(x) = \frac{2}{5}(x^2-6) & \text{si } x > 2. \end{cases}$$

$$2) \lim_{x \rightarrow +\infty} f(x) = +\infty \text{ et } \lim_{x \rightarrow -\infty} f(x) = 1$$

$$f'(x) = \begin{cases} \frac{18x}{(x^2+1)^2} & \text{si } x \leq 2 \\ \frac{4x}{5} & \text{si } x > 2 \end{cases}$$



Exercice n° 11

$$1) Df = \mathbb{R} \setminus \{-2\}$$

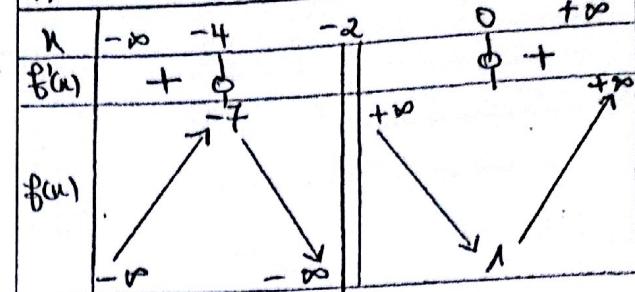
$$2) \lim_{x \rightarrow -2^-} f(x) = \infty \text{ alors la droite } x = -2 \text{ est une asymptote verticale}$$

3) $\frac{f(x)}{x+2} = x-1 + \frac{4}{x+2}$ donc $y = x-1$
 est une asymptote oblique à la courbe
 $\forall x \in \mathbb{R} \setminus \{-2\}$ $|f(x) - y| > 0$ alors la droite
 (D) est au dessus de la courbe (f).
 $\forall x \in \mathbb{R} \setminus \{-2\}$ $|f(x) - y| > 0$ alors la courbe
 (B) est au dessous de la droite (D).

$$4) f'(x) = \frac{x(x+4)}{(x+2)^2}$$

$\forall x \in \mathbb{R} \setminus \{-2\}$, $f'(x)$ dépend du signe de $x(x+4)$ car $(x+2)^2 > 0$.

7)

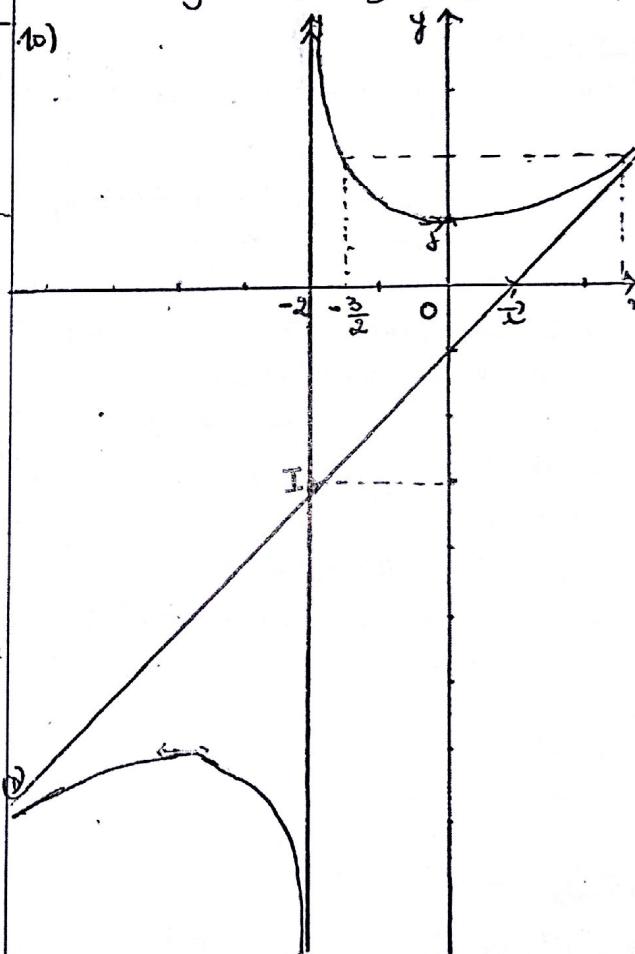


$$8) \frac{f(-2+x) + f(-2-x)}{2} = -3$$

$$\frac{x^2-3x+4 - x^2-3x-4}{x} = -3 \text{ alors } I(-2, -3) \text{ est un centre de symétrie.}$$

$$9) f'(1) = \frac{5}{9} \Rightarrow y = \frac{5}{9}x + \frac{7}{9}$$

10)



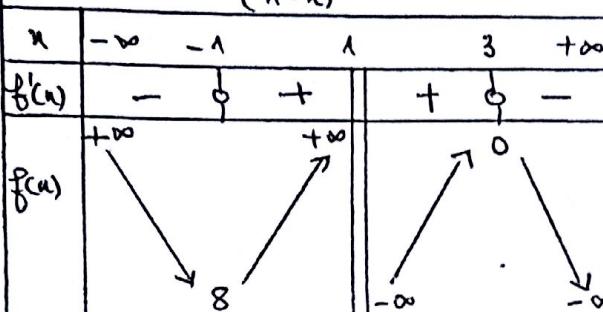
$$10) S = \left[-\frac{3}{2}; \frac{5}{2}\right]$$

Exercice n° 13

1) $f(2) = -1$
 $f'(2) = 3 \Rightarrow \begin{cases} 2\alpha + \beta = -3 \\ \alpha + \beta = 3 \end{cases} \Rightarrow f(x) = \frac{x^2 - 6x + 9}{(1-x)}$

2) $f(x) = -x + 5 + \frac{4}{1-x}$

4) $f'(x) = \frac{(x+1)(-x+3)}{(1-x)^2}$



5) $f(1-x) = 4+x + \frac{4}{x}$
 $f(1+x) = 4-x - \frac{4}{x}$

$f(1-x) + f(1+x) = 8$ alors $I(-1; 4)$ est un centre de symétrie de (f) .

Exercices n° 14, 15 et 16 (Voir exo 11 et 13) pour les mêmes méthodologies de résolution

Exercice n° 17

1) $Df = \mathbb{R} \setminus \{-2\}$; $x = -2$ est A.V

2) a) $\lim_{x \rightarrow +\infty} f(x) = +\infty$ et $\lim_{x \rightarrow -\infty} f(x) = +\infty$

b) $f(x) = \frac{3}{4}x^2 - \frac{5}{2}x + 4 - \frac{6}{x+2}$

c) $\lim_{x \rightarrow +\infty} (f(x) - P(x)) = 0$ alors P est une asymptote à la courbe (f) .

d) $\forall x \in]-\infty, -2[$ $f(x) - P > 0$ alors la courbe (f) est au dessus de la courbe P et $\forall x \in]-2, +\infty[$, $f(x) - P < 0$ alors la courbe P est au dessus de la courbe (f) .

Exercice n° 18

1) a) $Dg = \mathbb{R}$;

$g'(x) = \sqrt{1+x^2} + \frac{x^2}{\sqrt{1+x^2}} > 0$ alors g

est strictement croissante sur \mathbb{R}

b) $\forall x \in \mathbb{R}$, g est continue, dérivable et strictement croissante sur \mathbb{R} .

$\lim_{x \rightarrow +\infty} g(x) = +\infty$ et $\lim_{x \rightarrow -\infty} g(x) = -\infty$ alors g réalise une bijection de \mathbb{R} vers \mathbb{R} ,

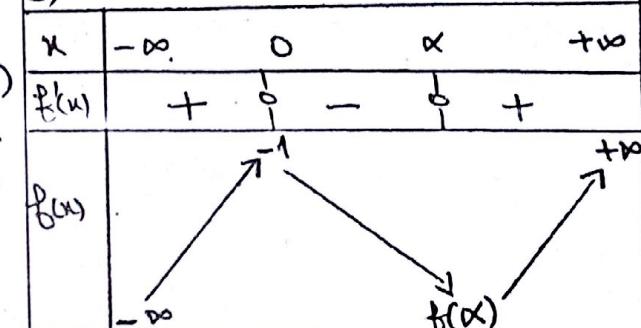
or $0 \in \mathbb{R}$, par conséquent $g(x) = 0$

c) $\forall x \in]-\infty; 0]$ $g(x) \leq 0$
 $\forall x \in [0; +\infty[$ $g(x) \geq 0$

2) a) $\lim_{x \rightarrow -\infty} f(x) = -\infty$ et $\lim_{x \rightarrow +\infty} f(x) = +\infty$

b) $f'(x) = x^2 - \frac{x}{\sqrt{1+x^2}} = \frac{x\sqrt{1+x^2}}{\sqrt{1+x^2}}$

c)



Exercice n° 19

a) $g'(x) = x(3x+4) > 0 \Rightarrow x \in [0; +\infty[$

$g(0) \times \lim_{x \rightarrow +\infty} g(x) < 0$; $g(\alpha) = 0$

b) $\forall x \in [0; \alpha]$ $g(x) \leq 0$

$\forall x \in [\alpha; +\infty[$ $g(x) \geq 0$

c) $h(x) = g(x^2) = x^6 + 2x^4 - 4$

$h(-x) = h(x)$ alors h est paire. En posant $x^2 = x \Rightarrow x = \sqrt{x}$.

$\forall x \in [\alpha; +\infty[$ $g(x) > 0 \Rightarrow \forall x \in [\sqrt{\alpha}; +\infty[$

$h(x) > 0$ et $h'(x) = 2x^5 g'(x) > 0$

d'où h est strictement croissante sur $[\sqrt{\alpha}; +\infty[$.

Corrigés			
u	0	$\sqrt{2}$	$+\infty$
$f'(u)$	+	0	-
$f(u)$	-4	$\rightarrow +\infty$	

$\forall u \in [0, \sqrt{2}] \quad f(u) \leq 0$

$\forall u \in [\sqrt{2}, +\infty[\quad f(u) \geq 0$.

$$B/ \quad f(u) = \frac{\sqrt{u^2+2}}{u} + u$$

1) $f(-u) = -f(u)$ alors f est impaire

2) $\lim_{u \rightarrow 0^-} f(u) = -\infty$ et $\lim_{u \rightarrow 0^+} f(u) = +\infty$

$u=0$ est une asymptote verticale.

$$4) \lim_{u \rightarrow +\infty} f(u) - y = \lim_{u \rightarrow +\infty} \frac{\sqrt{u^2+2} - u}{u}$$

$$= \lim_{u \rightarrow +\infty} \sqrt{1 + \frac{2}{u^2}} - 1 = 0$$

alors $y = u + 1$ est une asymptote

oblique à la courbe (f) .

$$\lim_{u \rightarrow -\infty} \frac{f(u)}{u} = \lim_{u \rightarrow -\infty} \frac{\sqrt{1 + \frac{2}{u^2}}}{u} + 1 = 1$$

$$\lim_{u \rightarrow -\infty} f(u) - u = \lim_{u \rightarrow -\infty} -\sqrt{1 + \frac{2}{u^2}} = -1$$

alors $y = u - 1$ est une asymptote

oblique à la courbe (f) en $-\infty$.

$$5) \quad f'(u) = \frac{u^2 - (u^2+2)}{u^2 \sqrt{u^2+2}} + 1$$

$$= \frac{u^2 \sqrt{u^2+2} - 2}{u^2 \sqrt{u^2+2}} = \frac{\sqrt{u^6+2u^4} - 2}{u^2 \sqrt{u^2+2}}$$

$$= \frac{u^6+2u^4-4}{u^2 \sqrt{u^2+1} (\sqrt{u^6+2u^4} + 2)}$$

$$f'(u) = \frac{-f(u)}{u^2 (\sqrt{u^6+2u^4} + 2) \sqrt{u^2+2}}$$

6) Tableau de variation

u	$-\infty$	$-\sqrt{2}$	0	$\sqrt{2}$	$+\infty$
$f'(u)$	+	0	-	-	+
$f(u)$	$f(-\sqrt{2})$	$\rightarrow +\infty$	$f(0) = -1$	$f(\sqrt{2})$	$\rightarrow +\infty$

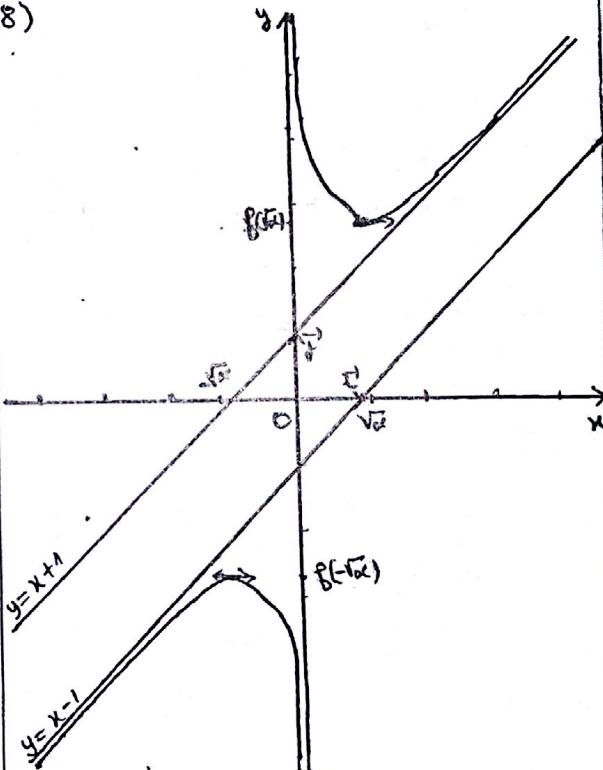
$f(\sqrt{2}) \approx 2,73$ et $f(-\sqrt{2}) \approx -2,73$.

$$f(\sqrt{2}) = 2\sqrt{2} \text{ et } f'(\sqrt{2}) = \frac{f(\sqrt{2})}{2\sqrt{2}}$$

$$f'(\sqrt{2}) = \frac{1}{2}$$

$$(T): \quad y = \frac{1}{2}(u + 3\sqrt{2})$$

8)



Exercice n° 21

$$I/1) \quad g'(u) = 3(u-1)(u+1)$$

$\forall u \in]-\infty, -1] \cup [1, +\infty[\quad g'(u) \geq 0$ alors g est croissante et $[-1, 1] \quad g'(u) \leq 0$ alors g est décroissante.

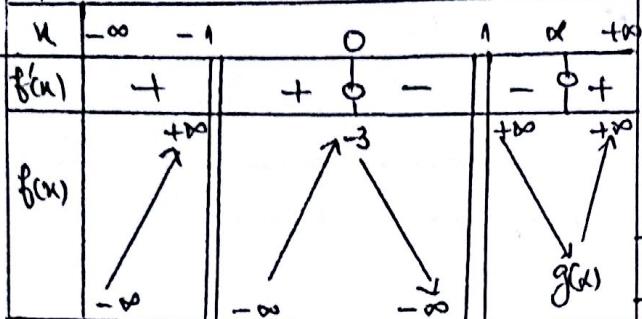
$$3) \quad \forall u \in]-\infty; x] \quad g(u) \leq 0$$

$$\forall u \in [x; +\infty[\quad g(u) \geq 0$$

II/ $f(x) = \frac{2x^3+3}{x^2-1}$; $Df = \mathbb{R} \setminus \{-1; 1\}$

2) $f'(x) = \frac{2xg(x)}{(x^2-1)^2}$

4)



5) $g(x) = 0 \Rightarrow 3 = x^3 - 3x$

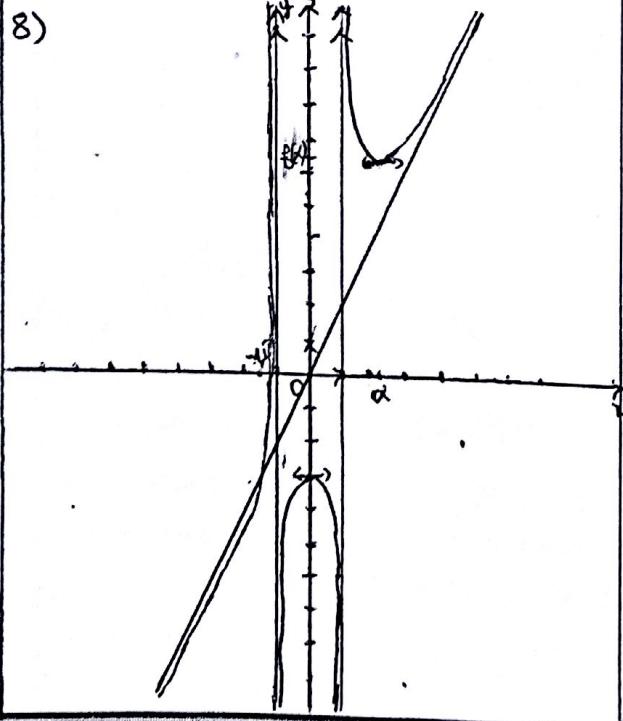
$$f(x) = \frac{2x^3 + x^3 - 3x}{x^2 - 1} = 3x$$

6) $x = -1$ est une asymptote verticale
 $x = 1$ est une asymptote verticale

$$f(x) = 2x + \frac{2x+3}{x^2-1}$$

7) $\forall x \in [-\infty; -\frac{3}{2}] \cup [-1; 1]$ $f(x) - y \leq 0$ alors la droite (D) est au dessus de la courbe (f). et $\forall x \in [-\frac{3}{2}; -1] \cup [1; +\infty]$, $f(x) - y \geq 0$ alors la courbe (f) est au dessus de la droite (D).

8)



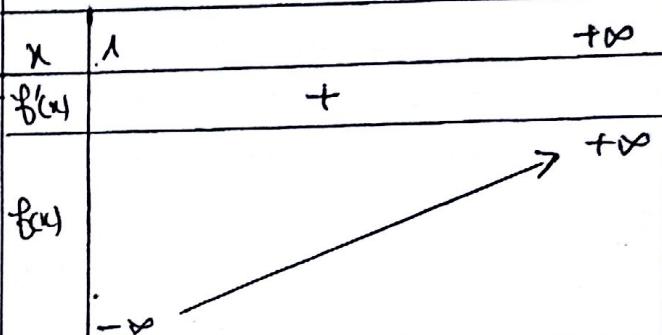
Exercice n° 22

$$f(x) = \frac{x^2 - x - 6}{x - 1}$$

$$D_f =]1; +\infty[$$

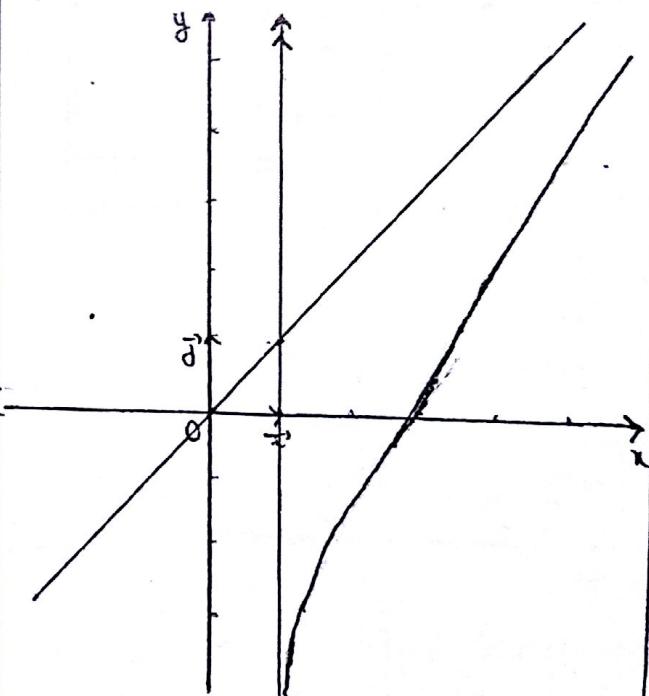
4) b) $\lim_{x \rightarrow 1^+} f(x) = -\frac{6}{0^+} = -\infty$

2) $\forall x \in]1; +\infty[$, $f'(x)$ dépend du signe de $x^2 - 2x + 7$. Si $x \in]1; +\infty[$, $x^2 - 2x + 7 > 0$ alors f est strictement croissante sur $]1; +\infty[$



3) $f(x) - y = -\frac{6}{x-1} < 0 \quad \forall x \in]1; +\infty[$
alors la droite (D) est au dessus de la courbe (f).

4) a) $f(3) = 0$; $f'(3) = \frac{5}{2}$
(T) : $y = \frac{5}{2}x - \frac{15}{2}$



Corrigés

Exercice n° 23 (Voir exo 18)

Exercice n° 24

1) $\frac{x^3}{1-x} > 0$ et $1-x \neq 0$ $D_f = [0; 1[$.

2) $\lim_{x \rightarrow 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0^+} \frac{\frac{x^3}{1-x}}{x} = \lim_{x \rightarrow 0^+} \frac{x^2}{1-x}$

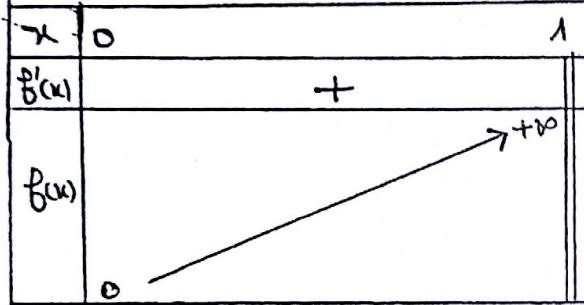
$\lim_{x \rightarrow 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0^+} \sqrt{\frac{x}{1-x}} = 0$

alors f est dérivable en 0.

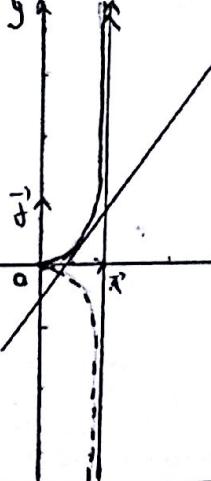
3) $f'(x) = \frac{\frac{3}{2}\sqrt{x}(\sqrt{1-x}) + \frac{1}{2\sqrt{1-x}}x\sqrt{x^3}}{(1-x)}$

$$= \frac{\sqrt{x}(3-2x)}{2(1-x)\sqrt{1-x}} = \frac{x(3-2x)}{2(1-x)\sqrt{x-x^2}}$$

$\forall x \in [0; 1[, f'(x) > 0$ alors f est croissante sur $[0; 1[$.



4) $f'(\frac{1}{2}) = 2$ $f(\frac{1}{2}) = \frac{1}{2} \Rightarrow T_0: y = 2x - \frac{1}{2}$

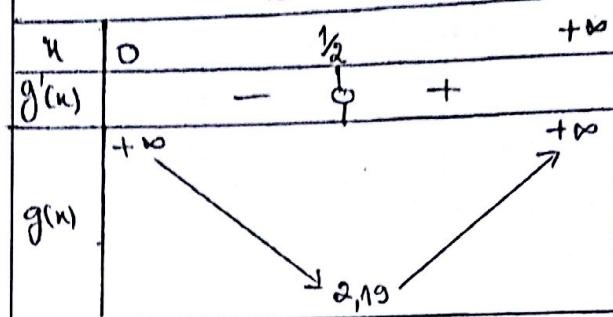


$$y = \sqrt{\frac{x^3}{1-x}} \Rightarrow y^2(1-x) = x^3$$

$$x(x^2 + y^2) - y^2 = 0$$

Exercice n° 25

A/1) $g'(x) = \frac{4x^2 - 1}{x}$



$$g(x) > 0$$

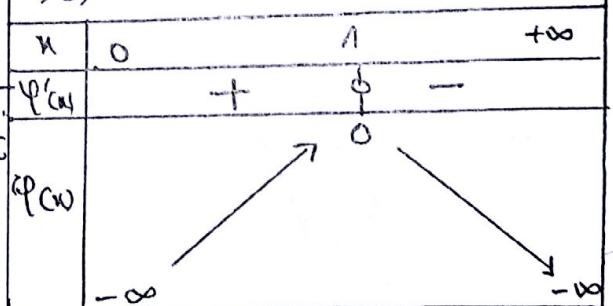
B/1) $\lim_{x \rightarrow +\infty} f(x) = +\infty$ et $\lim_{x \rightarrow 0} f(x) = -\infty$

3) $\forall x \in]0; +\infty[$, $f'(x) > 0$ alors f est strictement croissante sur $]0; +\infty[$

C/ $\varphi(x) = -x^2 + 1 - \ln x$, $\varphi'(x) < 0$
alors φ est strictement décroissante sur $]0; +\infty[$.

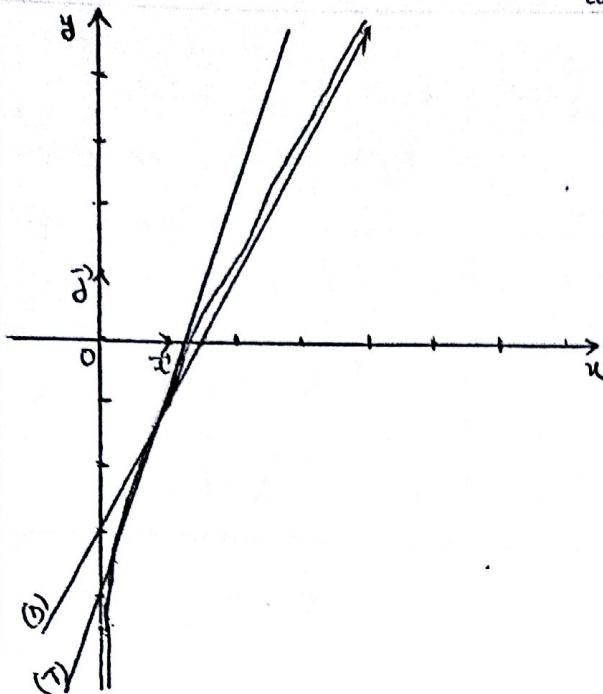
$\forall x \in]0; 1[$ $\varphi(x) > 0$ et $\forall x \in]1; +\infty[$ $\varphi(x) < 0$

2) b)



$\forall x \in]0; +\infty[$ $\varphi(x) < 0$

c) $\forall x \in]0; +\infty[$ $|f(x)| - y < 0$ alors la tangente (T) est au-dessus de la courbe (f).



D) 2) $A = \int_1^e [f(x) - g(x)] dx \cdot u \cdot a$

$$A = \int_1^e \frac{1}{2} \ln x dx \times 4 \text{ cm}^2$$

$$= \left[\frac{1}{2} (\ln x)^2 \right]_1^e \times 4 \text{ cm}^2$$

$$A = 2 \text{ cm}^2.$$

Exercice n° 27

2) $g'(x) = \frac{x^2 + 2x + 2}{x^3} > 0$ alors g est strictement croissante sur $[0; +\infty[$.

4) $\forall x \in [0; \alpha] g(x) \leq 0$ et $\forall x \in [\alpha; +\infty[g(x) \geq 0$

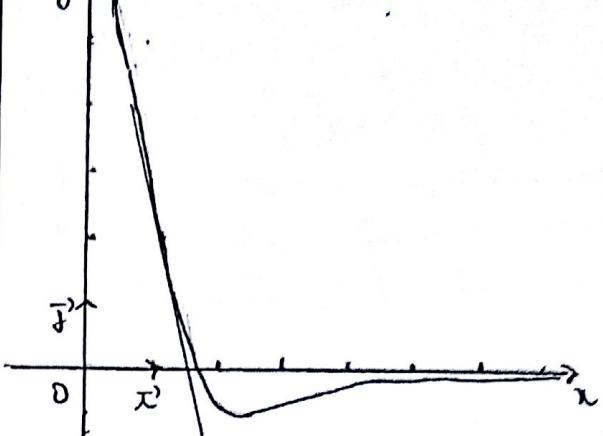
B/ 1) $\lim_{x \rightarrow 0^+} f(x) = +\infty$ alors $x=0$ est une asymptote verticale à la courbe (f) . $\lim_{x \rightarrow +\infty} f(x) = 0$ alors $y=0$ est une asymptote horizontale à la courbe (f) .

2) $g(x) = 0 \quad \ln x = \frac{2x-1}{x^2} \Rightarrow f(x) = -\frac{1+x}{x^2}$

3) b) $\forall x \in [0; \alpha] f'(x) \leq 0$ alors f est décroissante sur $[0; \alpha]$ et $\forall x \in [\alpha; +\infty[f'(x) \geq 0$ alors f est croissante sur $[\alpha; +\infty[$.

Corrigés

H) 1): $y = -\frac{3}{e}x + \frac{4}{e}$



C) $A(x) = \int_1^x f(x) dx \cdot u \cdot a \quad u \cdot a = 2 \text{ cm}^2$

$$= \left[\frac{1}{2} \ln x \right]_1^x \times 2 \text{ cm}^2$$

$$A(x) = \left(\frac{\ln x}{2} - \frac{1}{2} \right) \times 2 \text{ cm}^2$$

Exercice n° 28

Df = $\mathbb{R} \setminus \{1\}$

1) $f(x) = x+3 - \frac{1}{(x-1)^2}$

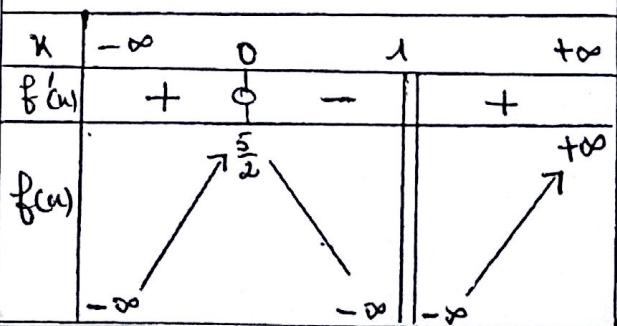
2) $\lim_{x \rightarrow +\infty} f(x) = +\infty$ et $\lim_{x \rightarrow -\infty} f(x) = -\infty$

a) $\lim_{x \rightarrow 1^-} f(x) = -\infty$, $\lim_{x \rightarrow 1^+} f(x) = -\infty$

b) $x=1$ est une asymptote verticale
 $y=x+3$ est une asymptote oblique

C) $F(x) = \frac{1}{2} x^2 + 3x + \frac{1}{2(x-1)} + k \quad k \in \mathbb{R}$

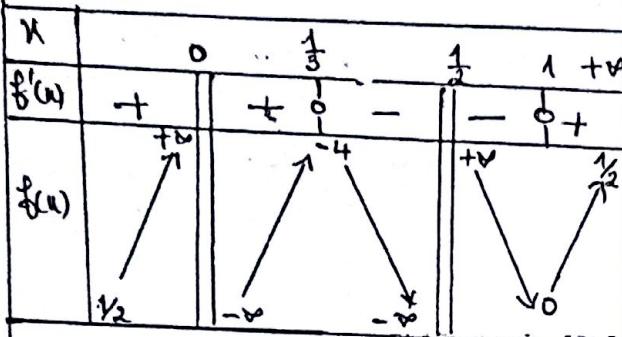
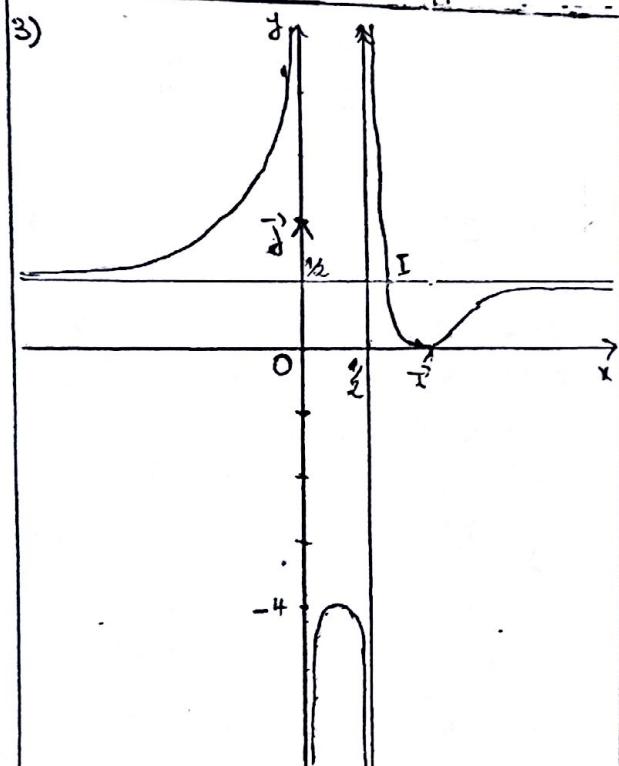
3) $f'(x) = 1 + \frac{1}{(x-1)^3} = \frac{x(x^2-3x+3)}{(x-1)^3}$



Exercice n° 29

I/ $\Psi(1) = 0$ et $\Psi'(1) = 0 \Rightarrow \Psi(x) = \frac{(x-1)^2}{2x^2-x}$

II/ a) $f'_5(x) = \frac{(3x-1)(x-1)}{(2x^2-x)^2}$



4) $f(x) = \frac{1}{2} \Rightarrow x = \frac{3}{2} \Rightarrow I\left(\frac{3}{2}; \frac{1}{2}\right)$

5) (T) : $y = -\frac{27}{4}x + 5$

III. b) $A = 0,39 \text{ cm}^2$.

Exercice n° 30

1) $P'(x) = 6x(x-1)$

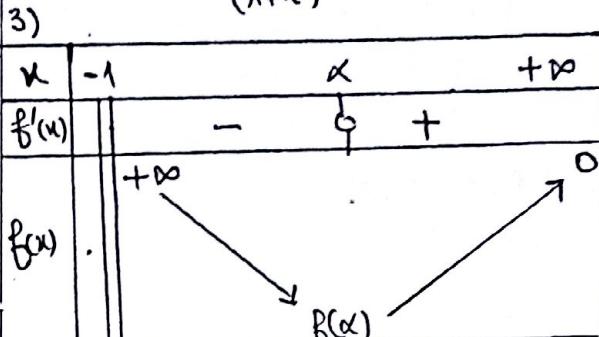
$\forall x \in]-\infty; 0] \cup [1; +\infty[\quad P'(x) \geq 0$

$\forall x \in [0; 1] \quad P'(x) \leq 0$

2) $\forall x \in]-1; +\infty[\quad P(x) \leq 0$

$\forall x \in [x_1 + \omega[\quad P(x)$

3) $f'(x) = \frac{P(x)}{(1+x^3)^2}$



4) (T) : $y = -x + 1$

5) $f(x) - y = \frac{x^3(x-1)}{1+x^3}$

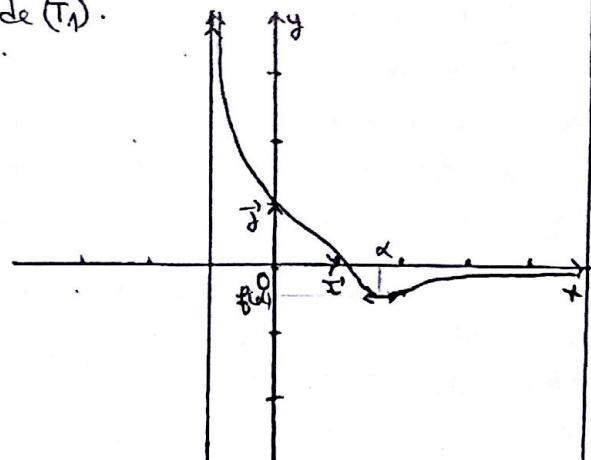
$\forall x \in]-1; 0]$ la courbe (f) est au dessus de la droite (T) et $\forall x \in [0; 1[$ la droite (T) est au dessus de la courbe (f).

6) $f'(1) = \frac{-2}{2x} = -\frac{1}{2}; \quad f(1) = 0$

(T₁) : $y = -\frac{1}{2}(x-1)$

$f(x) - y = \frac{(x-1)(x^3-1)}{x^3+1} = \frac{(x-1)^2(x^2+x+1)}{x^3+1}$

$\forall x \in]-1; +\infty[\quad (x-1)^2(x^2+x+1) > 0$
alors la courbe (f) est au dessus de (T₁).



Exercice n° 32

$$A/ 1) g'(x) = 2x(3x+1)$$

$$\forall x \in]-\infty; -\frac{1}{3}] \cup [0; +\infty[g'(x) > 0$$

$$\forall x \in [-\frac{1}{3}; 0] g'(x) \leq 0$$

$$3) \forall x \in]-\infty; \alpha] g(x) \leq 0$$

$$\forall x \in [\alpha; +\infty[g(x) > 0$$

$$B/ 1) D_f = \mathbb{R} \setminus \{0\}$$

$$2) f'(x) = \frac{1}{3} \times \frac{g(x)}{x^2}$$

x	$-\infty$	0	α	$+\infty$
$f'(x)$	-	-	0	+
$f(x)$	$+\infty$	$+\infty$	$+\infty$	$+\infty$

$$4) f(x) = \frac{1}{3}(x^2 + x + \frac{1}{x}); g(x) = 0$$

$$x^3 = \frac{1-x^2}{2} \Rightarrow f(x) = \frac{1}{3} \left(\frac{1-x^2+2x^2+2}{2x} \right)$$

$$\text{d'où } f(x) = \frac{1}{2x} + \frac{x}{6}$$

$$5) x_A = -1 \text{ et } x_B = 1$$

$$a) y = ax + b \Rightarrow y_A = f(-1) = -\frac{1}{3} = ax_A + b$$

$$\Rightarrow y_B = f(1) = 1 = ax_B + b$$

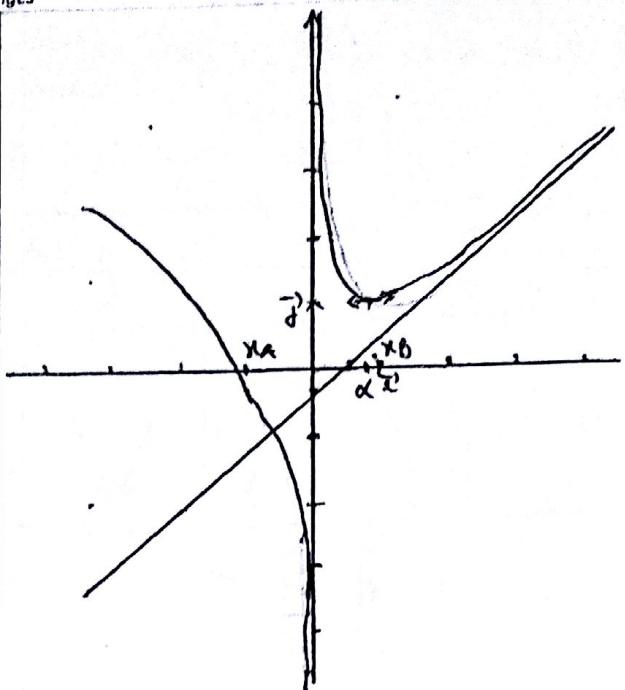
$$a = \frac{2}{3} \text{ et } b = \frac{1}{3} \Rightarrow (AB); y = \frac{2}{3}x + \frac{1}{3}$$

$$b) f'(1) = \frac{2}{3} \text{ donc } (AB) \text{ est tangente à la courbe } (f) \text{ en } B.$$

$$f(x) = \frac{2}{3}x - \frac{1}{3}$$

$$c) f(x) - y = \frac{1}{3} \frac{(x-1)^3}{x}$$

$\forall x \in]-\infty; 0] \cup [1; +\infty[$ alors la courbe (f) est au dessus de la droite Δ et $\forall x \in]0; 1]$, la droite Δ est au de la courbe (f) .



Exercice n° 33

$$1) c) f(x) - (3x-1) = -\frac{(x-1)}{(x+1)^2}$$

$$\forall x \in]-\infty; -1] \cup [1; +\infty[f(x) - y > 0$$

$$\forall x \in]1; +\infty[f(x) - y < 0$$

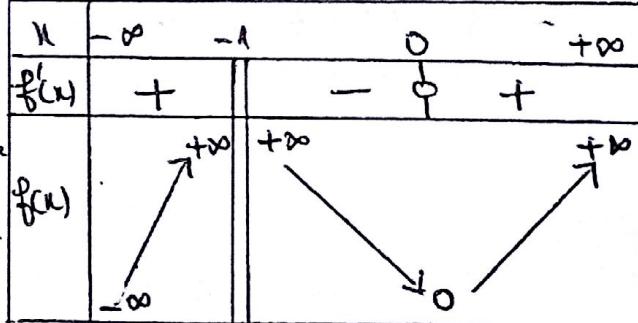
(E) coupe (D) en $I(-1; 2)$

$$d) f(x) = 0 \Rightarrow A_1(0; 0); A_2(-\frac{5}{3}; 0)$$

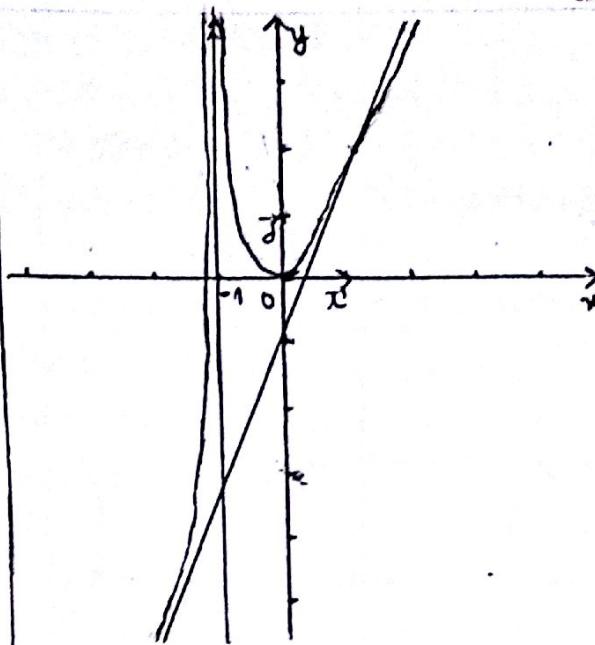
$$f(x) = y \Rightarrow I'(1; 2); B_1(-\frac{3-\sqrt{3}}{3}; 2) \text{ et } B_2(-\frac{3+\sqrt{3}}{3}; 2)$$

$$2) a) f'(x) = \frac{x \cdot P(x)}{(x+1)^3} \text{ avec } P(x) = 3x^2 + 9x + 10$$

$$b) P(x) > 0 \text{ donc } f'(x) \text{ dépend du signe de } x(x+1)^3$$



Corrigés



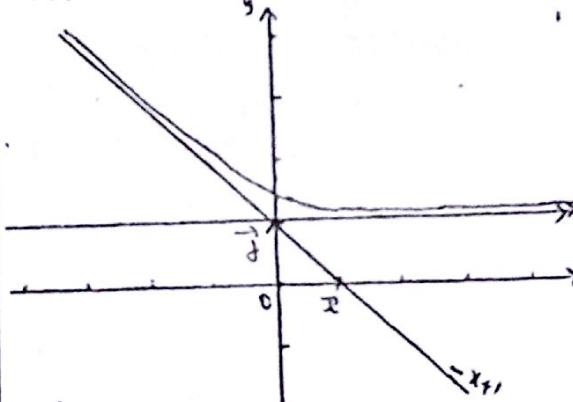
3) C) $A = (1 - \ln 2) \times 4 \text{ cm}^2$.

Exercice n° 34

1) a) $\forall x \in \mathbb{R}, g'(x) = \frac{1}{2(x^2+1)\sqrt{1+x^2}} > 0$
g est strictement croissante sur \mathbb{R} .

b) 0 est un majorant de g sur \mathbb{R} donc $\forall x \in \mathbb{R}, g(x) \geq 0$

2) b) $\forall x \in \mathbb{R}, f'(x) = g(x)$
 $\lim_{x \rightarrow +\infty} f(x) = 1$ et $\lim_{x \rightarrow -\infty} f(x) = +\infty$



5) a) La fonction f est continue et strictement décroissante sur \mathbb{R} donc f est une bijection réciproque f^{-1} est dérivable sur $]1; +\infty[$ et

strictement décroissante sur $]1; +\infty[$

b) $f(0) = \frac{3}{2} \Rightarrow f^{-1}\left(\frac{3}{2}\right) = 0$

$[f^{-1}\left(\frac{3}{2}\right)]' = \frac{1}{f' \circ f^{-1}\left(\frac{3}{2}\right)} = \frac{1}{f'(0)} = -2$

c) $(f \circ f^{-1}) = S_{(\Delta)}$ où (Δ) est la première bissectrice ($y = x$)

6) $y = -\frac{1}{2}x + 1 + \frac{1}{2}\sqrt{x^2+1}$

$(2y + x - 2)^2 = x^2 + 1$

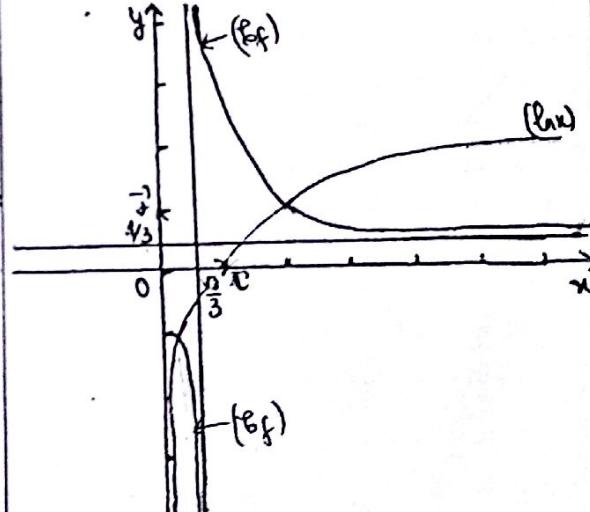
$\Rightarrow x = \frac{-3 + 8y - 4y^2}{4(y-1)} = f^{-1}(y); (y > 1)$

$\forall x \in]1; +\infty[\quad f^{-1}(x) = \frac{-4x^2 + 8x - 5}{4x - 4}$

Exercice n° 35

$\forall x \in \mathbb{R} \setminus \{-\frac{\sqrt{3}}{3}\}, g'(x) = \frac{-8x}{(3x^2-1)^2}$

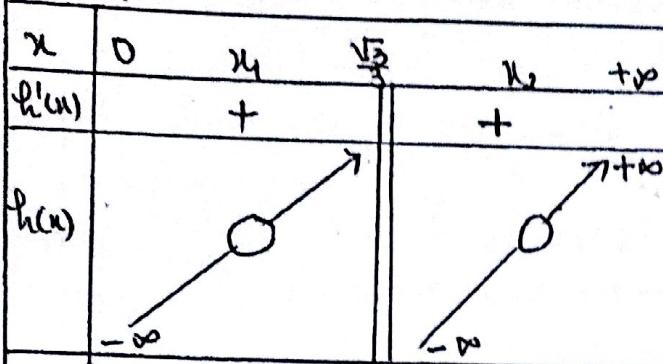
x	0	$\frac{\sqrt{3}}{3}$	$+\infty$
$g'(x)$	-	+	
$g(x)$	-1	$-\infty$	$\frac{1}{3}$



3) $\forall x \in \mathbb{R} \setminus \{-\frac{\sqrt{3}}{3}\}, h(x) = \ln x - g(x); h'(x) = \frac{1}{x} + \frac{8}{3x^2-1}$

Page 122

$$f'(x) > 0$$



b) En utilisant le théorème de valeurs intermédiaires et de bijection, démontrer les deux solutions x_1 et x_2 .

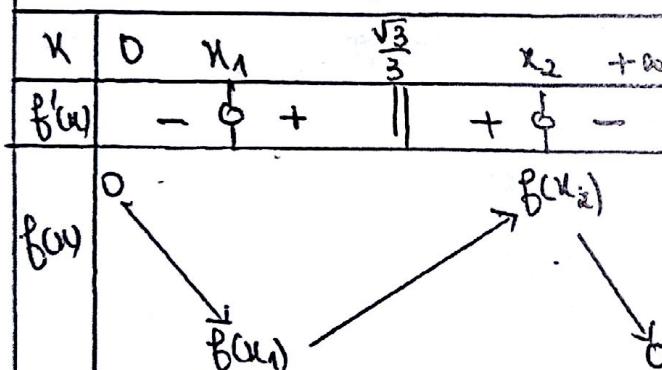
c) $\forall x \in]0; x_1] \cup [\frac{\sqrt{3}}{3}; x_2]$: $f'(u) < 0$
 $\forall x \in]x_1; \frac{\sqrt{3}}{3}] \cup]x_2; +\infty[$: $f'(u) > 0$

3/ 1) $f'(u) = \frac{(lnx+1)(x^2+1)-4x^2lnx}{(x^2+1)^3}$

$$= \frac{lnx - 3x^2lnx + 1}{(x^2+1)^3}$$

$$(1-3x^2)(lnx - \frac{x^2+1}{3x^2-1})$$

$$f'(u) = \frac{(x^2+1)^3}{(x^2+1)^3}$$



Exercice n° 36

1) $f(u+\pi) = 2\sin(2u+2\pi) + \cos(4u+4\pi)$

$$f(u+\pi) = 2\sin 2u \cos 2\pi + 4\cos 4u \cos 4\pi$$

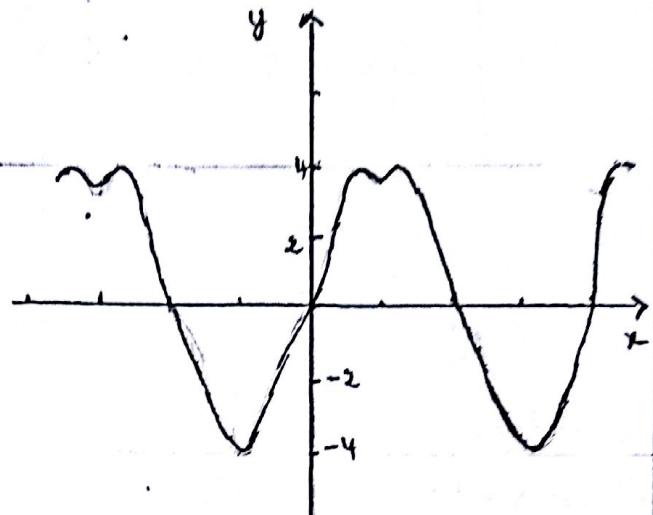
$$= 2\sin 2u + 4\cos 4u = f(u).$$

2) $f'(u) = 4\cos 2u(1-2\sin 2u)$

$$\begin{cases} 4\cos 2u = 0 \\ 1-2\sin 2u = 0 \end{cases} \Rightarrow \begin{cases} \cos 2u = \cos \frac{\pi}{2} \\ \sin 2u = \sin \frac{\pi}{6} \end{cases}$$

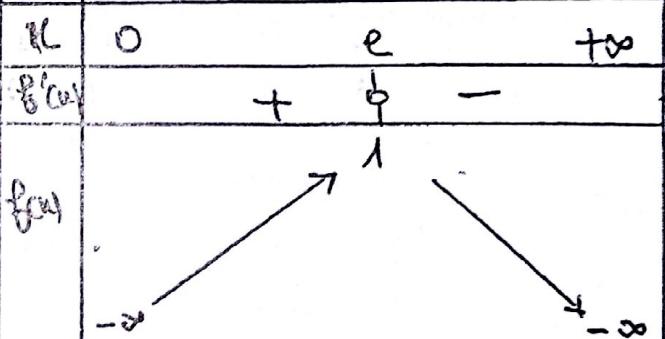
$$\begin{aligned} \cos 2u = \cos \frac{\pi}{2} &\Rightarrow \begin{cases} u = \frac{\pi}{4} + k\pi \\ u = -\frac{\pi}{4} + k\pi \end{cases} \\ -k \in \mathbb{Z} \end{aligned}$$

$$\begin{aligned} \sin 2u = \sin \frac{\pi}{6} &\Rightarrow \begin{cases} u = \frac{\pi}{12} + k\pi \\ u = \frac{5\pi}{12} + k\pi \end{cases} \end{aligned}$$



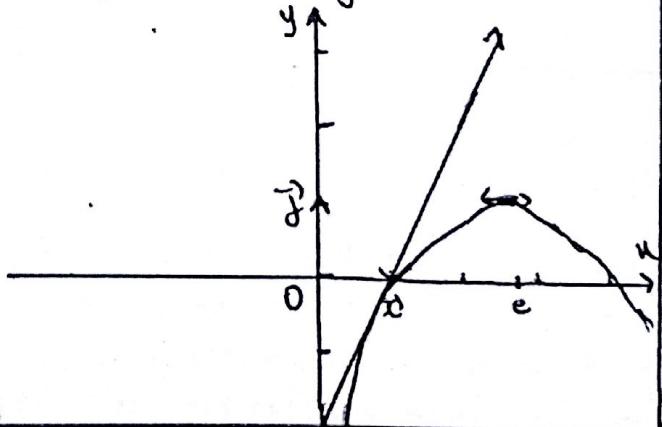
Exercice n° 33

1) $D_f =]0; +\infty[$; 2) $f'(u) = \frac{2}{u}(1-\ln u)$



4) $f(u) = 0 \Rightarrow S = \{1; e^2\}$

5) $f'(u) = 2 \Rightarrow y = 2x - 2$.



Exercice n° 39

1) $P(x) = -(x^3 - 1)$, $\forall x \in]0, 1]$ $P(x) > 0$
 $\forall x \in [1, +\infty[P(x) \leq 0$

2) $g'(x) = \frac{6P(x)}{x}$

$\forall x \in]0, 1]$ $g'(x) > 0$ et $\forall x \in [1, +\infty[$

$g'(x) \leq 0$. $g(1) = -5$ alors g est majorée par -5 donc $\forall x \in]0, +\infty[$ $g(x) < 0$.

3) 1) $\lim_{x \rightarrow 0^+} f(x) = -\infty$ et $\lim_{x \rightarrow +\infty} f(x) = +\infty$

2) $x=0$ est une asymptote verticale
 $y=x$ est une asymptote oblique

3) $\forall x \in]0, 1]$ la droite (D) est au dessus de (f) et $\forall x \in [1, +\infty[$, la courbe (f) est au dessus de (D) .

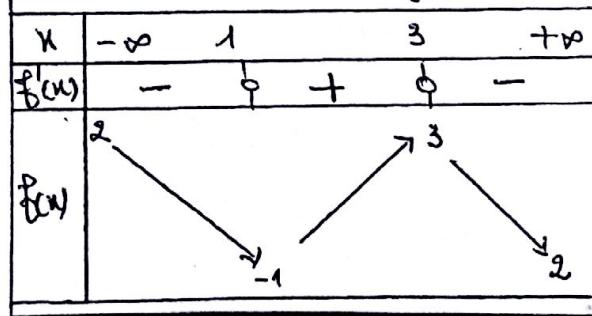
4) b) $g'(x) < 0 \Rightarrow f'(x) > 0$ alors f est strictement croissante sur $]0, +\infty[$.

5) a) $F'(x) = f(x)$.

b) $A = \int_1^2 f(x) dx \times 4 \text{ cm}^2 = [F(x)]_1^2$
 $A = 6,92 \text{ cm}^2$

Exercice n° 42

1) $Df = \mathbb{R}$, 2) $f(x) = \frac{-3(x+3)(x-1)}{(x^2 - 3x + 3)^2}$



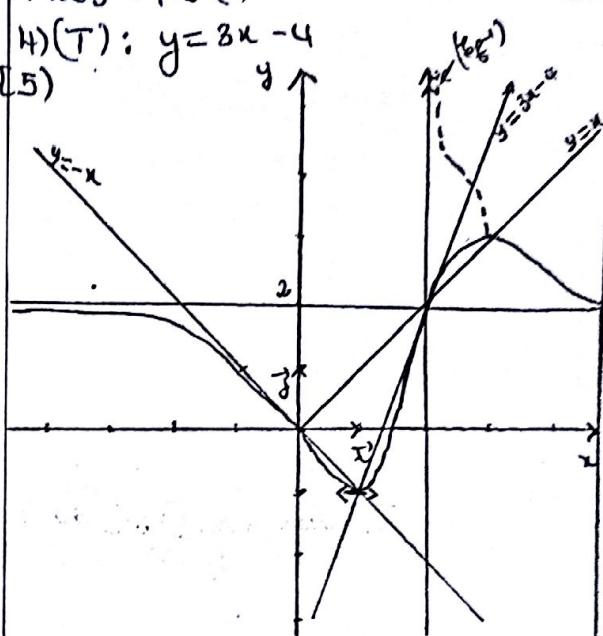
Corrigés

3) $f(x) - 2 = \frac{3(x-2)}{x^2 - 3x + 3}$

$\forall x \in [2, +\infty[$ (f) est au dessus de (D)

$\forall x \in]-\infty, 2]$ (D) est au dessus de (f)

4) (T) : $y = 3x - 4$



7) a) $A(\lambda) = \int_3^\lambda (f(x) - 2) dx$

b) etc) $2x - 3 \leq 3x - 6 \Rightarrow x \geq 3$

de $2x - 3 \leq 3x - 6 \Rightarrow x^2 - 3x + 3 \geq 0$

$\frac{2x-3}{x^2-3x+3} \leq \frac{3x-6}{x^2-3x+3}$ et comme $\lambda > 3$

$\int_3^\lambda \frac{2x-3}{x^2-3x+3} dx \leq A(\lambda)$. d) $\lim_{\lambda \rightarrow +\infty} A(\lambda) = +\infty$

Exercice n° 45

1) a) $\forall x \in]0, +\infty[$, $g'(x) = -\frac{1}{x} - \frac{1}{(2x^2+1)^2} < 0$
 g est décroissante sur $]0, +\infty[$

2) g est continue, dérivable et strictement décroissante sur $]0, +\infty[$

De plus $\lim_{x \rightarrow +\infty} g(x) = -\infty$ et $\lim_{x \rightarrow 0^+} g(x) = +\infty$

g définit une bijection de $]0, +\infty[$ vers \mathbb{R} , or $0 \in \mathbb{R}$, il existe donc un unique réel $\alpha \in]0, +\infty[$ tel que $g(\alpha) = 0$

3) $g(1) > 0$ $g(2) < 0 \Rightarrow 1 < x < 2$

En utilisant la méthode de balayage
on a: $1,8 < x < 1,9$.

4) $\forall x \in]0; x] g(x) > 0$

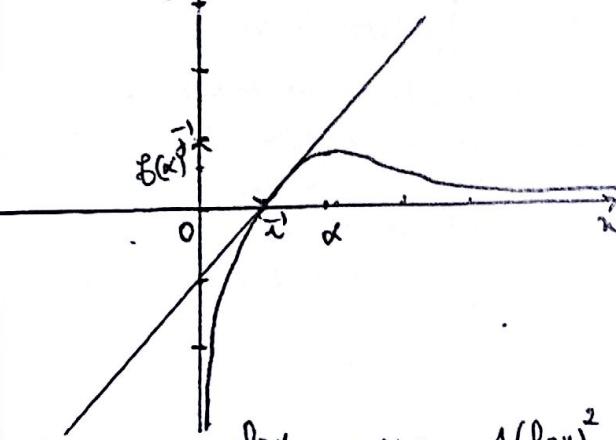
$\forall x \in [x; +\infty[g(x) \leq 0$.

B/2) $f'(x) = \frac{2(2x+1)\left(\frac{x+1}{2x+1} - \ln x\right)}{(x^2+x)^2}$

x	0	α	$+\infty$
$f'(x)$	+	0	-
$f(x)$	$-\infty$	$\nearrow f(x)$	0

$f(x) = \frac{\ln x}{x^2+x}$ or $\ln x = \frac{x+1}{2x+1}$

d'où $f(x) = \frac{2}{x(2x+1)}$



C/ 1) $x \mapsto \frac{\ln x}{x} \Rightarrow h(x) = \frac{1}{2}(\ln x)^2$

Exercice n° 46

A/ 1) $g'(x) = \frac{2(x^2-1)^2}{x^3} > 0$ alors
g est strictement croissante sur
 $]0; +\infty[$. et $g(1) = 0$

2) $\forall x \in]0; 1] g(x) \leq 0$

$\forall x \in [1; +\infty[g(x) \geq 0$

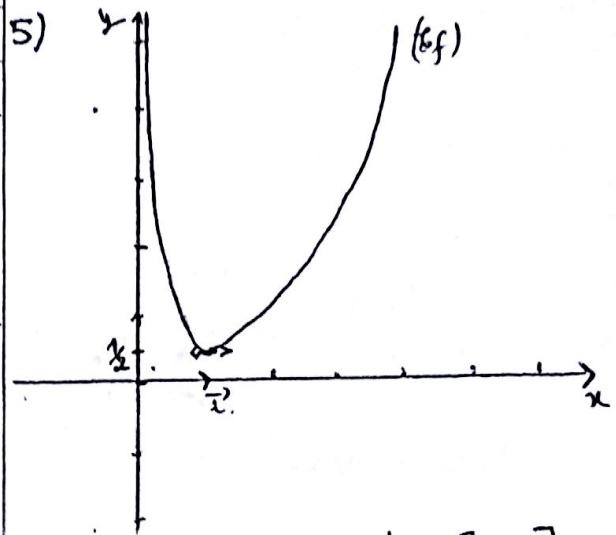
B/ 2) $\lim_{x \rightarrow 0^+} f(x) = +\infty$ et $\lim_{x \rightarrow +\infty} f(x) = +\infty$

caractéristiques

4)

u	0	1	$+\infty$
$f(u)$	-	0	+
$f(x)$	$+\infty$	$\frac{1}{2}$	$+\infty$

5)



C/ 1) $h(x) = f(x) - x$; $\forall x \in]0; 1]$
f est dérivable sur $]0; +\infty[$ donc
dérivable sur $]0; 1]$; x est donc
dérivable sur $]0; 1]$ et $h'(x) = f'(x) - 1$
 $f'(x) - 1 \leq -1 < 0 \Rightarrow h'(x) < 0$, h est
strictement décroissante sur $]0; 1]$.
 $h(1) = -\frac{1}{2} < 0$, h définit une bijection
de $]0; 1]$ vers $[-\frac{1}{2}; +\infty[$ de plus $0 \in$
 $[-\frac{1}{2}; +\infty[$ alors il existe une unique
réel α de $]0; 1]$ tel que $h(\alpha) = 0$ d'où

l'équation $f(x) = x$ admet une
solution unique sur $]0; 1]$ notée α .

2) On sait que $f(x) = f(\frac{1}{x})$ alors
 $x = \frac{1}{x} \Rightarrow 0 < x < 1$ et $\frac{1}{x} > 1$ d'où
 $f(x) = \frac{1}{x}$ admet donc solution
sur $]1; +\infty[$, soit β cette solution.

$f(\beta) = \frac{1}{\beta} \Rightarrow \frac{1}{\beta} = \alpha \Rightarrow \alpha \cdot \beta = 1$

3) $2 < \beta < 2,01$ et $0,49 < \alpha < 0,5$

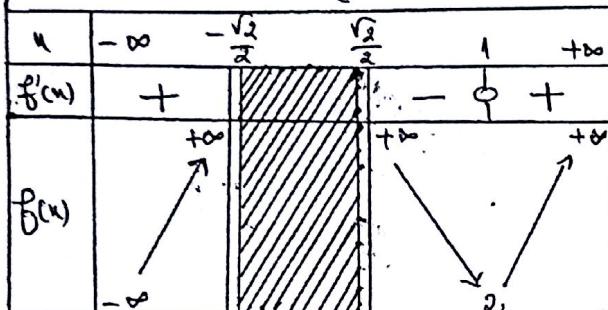
Exercice n° 47

A/1) $\forall x \in]-\infty; 0[\cup]1; +\infty[\quad A(x) > 0$

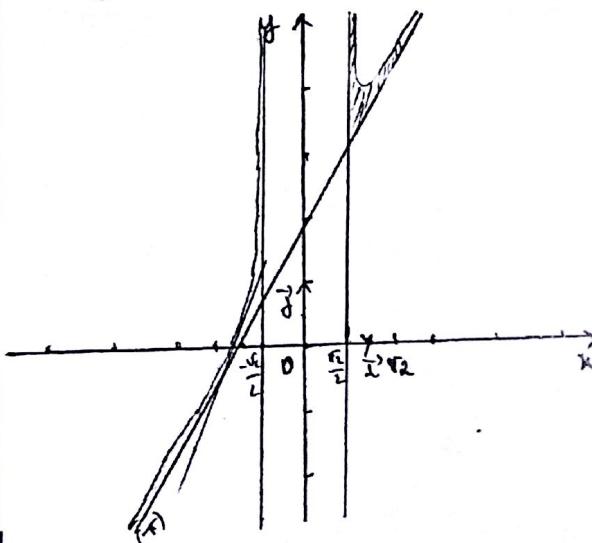
$\forall x \in]0; 1[\quad A(x) < 0$

2) a) $D_f =]-\infty; -\frac{\sqrt{2}}{2}[\cup]\frac{\sqrt{2}}{2}; +\infty[$

3) $\forall x \in D_f, f'(x) = \frac{Ax}{(2x^2-1)}$



(F): $y = 2x+2$ et (D): $y = x+1 - \frac{1}{2}\ln 2$



B/1) b) $H(x)$ primitive de $B(x)$

on a: $H(x) = \frac{\sqrt{2}}{2} \ln \left| \frac{x\sqrt{2}-1}{x\sqrt{2}+1} \right| + k \quad (k \in \mathbb{R})$

2) a) $I(\alpha) = \left[x \ln \left(\frac{2x^2}{2x^2-1} \right) \right]_x^{\frac{\sqrt{2}}{2}} + \int_x^{\frac{\sqrt{2}}{2}} \frac{2}{2x^2-1} dx$

$I(\alpha) = \sqrt{2} \ln \frac{4}{3} - \alpha \ln \left(\frac{2\alpha^2}{2\alpha^2-1} \right) + \frac{\sqrt{2}}{2} \left(\ln \frac{1}{3} - \ln \frac{1}{2\alpha^2-1} \right)$

b) $A(\alpha) = \int_{\alpha}^{\frac{\sqrt{2}}{2}} (f(x) - (x+1 - \ln \sqrt{2})) dx$

c) $A(x) = \frac{1}{2} I(\alpha)$

$\beta = \alpha \sqrt{2} - 1 \Rightarrow \alpha = \frac{\beta+1}{\sqrt{2}}$

$I(\alpha) = \frac{\sqrt{2}}{2} [2(\beta+1) \ln(\beta+1) - \beta \ln \beta + (\beta+2) \ln(\beta+2) + \ln 3]$

$\lim_{\alpha \rightarrow \frac{\sqrt{2}}{2}} I(\alpha) = 3\sqrt{2} \ln \left(\frac{2}{\sqrt{3}} \right)$

d) $A = 1,22 \text{ cm}^2$

Exercice n° 48

1) $f(x) = \begin{cases} \sqrt{-x^2+6x-5} & \text{si } 1 \leq x \leq 5 \\ \sqrt{x^2-6x+5} & \text{si } x \leq 1 \text{ ou } x \geq 5 \end{cases}$

2) $\lim_{x \rightarrow 1^-} \frac{f(x) - f(1)}{x-1} = \lim_{x \rightarrow 1^-} \frac{x-5}{\sqrt{-x^2+6x-5}} = -\infty$

$\lim_{x \rightarrow 1^+} \frac{f(x) - f(1)}{x-1} = \lim_{x \rightarrow 1^+} \frac{5-x}{\sqrt{x^2-6x+5}} = -\infty$

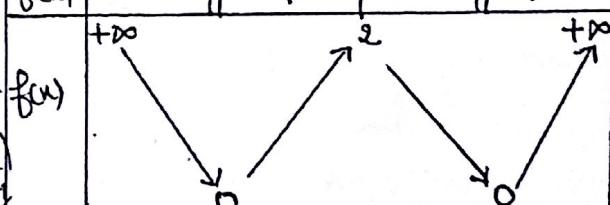
$\lim_{x \rightarrow 5^+} \frac{f(x) - f(5)}{x-5} = \lim_{x \rightarrow 5^+} \frac{x-1}{\sqrt{x^2-6x+5}} = +\infty$

$\lim_{x \rightarrow 5^-} \frac{f(x) - f(5)}{x-5} = \lim_{x \rightarrow 5^-} \frac{1-x}{\sqrt{-x^2+6x-5}} = -\infty$

ccl: f n'est pas dérivable en 1 et en 5 mais elle admet deux demi-tangentes verticales aux points des abscisses 1 et 5.

3) $f(x) = \begin{cases} \frac{-x+3}{\sqrt{-x^2+6x-5}} & \text{si } x \in]1; 5[\\ \frac{x-3}{\sqrt{x^2-6x+5}} & \text{si } x < 1 \text{ ou } x > 5 \end{cases}$

x	$-\infty$	1	3	5	$+\infty$
$f'(x)$	-		+	0	



5) $\lim_{x \rightarrow -\infty} \frac{f(x)}{x} = -1$ et $\lim_{x \rightarrow +\infty} f(x) = 3$

Corrigés

$$\lim_{n \rightarrow +\infty} \frac{f(n)}{n} = 1 \text{ et } \lim_{n \rightarrow +\infty} \frac{f(n)-3}{n} = -3$$

alors (D): $y = -x + 3$ est une asymptote

oblique en $-\infty$ et (D') l'équation

$y = x - 3$ est une asymptote oblique en

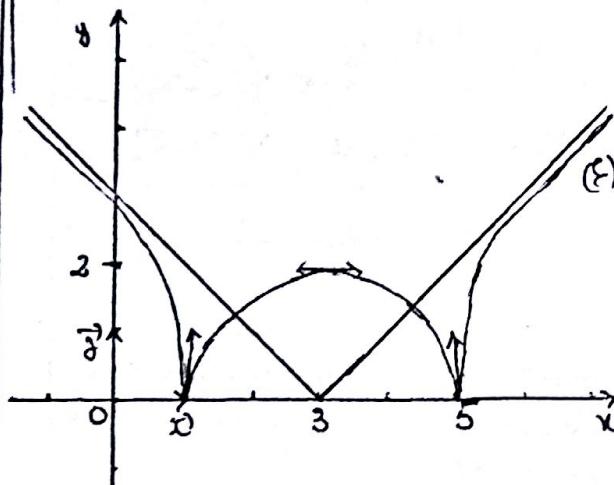
$+\infty$.

$$6) f(x) = -x + 3 \Rightarrow \begin{cases} |x^2 - 6x + 5| = (-x+3)^2 \\ x < 3 \end{cases}$$

$$(\mathbb{E}) \cap (D) = B(3 - \sqrt{2}; \sqrt{2})$$

$$f(x) = x - 3 \Rightarrow \begin{cases} |x^2 - 6x + 5| = (x-3)^2 \\ x > 3 \end{cases}$$

$$(\mathbb{E}) \cap (D') = A(3 + \sqrt{2}; \sqrt{2})$$



$$9) S = \frac{1}{2} \pi \times 2^2 = 2\pi \text{ cm}^2$$

$$S = \int_1^5 f(x) dx = 2\pi \text{ cm}^2.$$

Exercice n° 49

$$1) Dg =]0; +\infty[\text{ et } g(x) = x^2 e^x - 1$$

$g'(x) = x e^x (x+2) > 0$ alors g est strictement croissante sur $]0; +\infty[$.

$$g(0) = -1 \text{ et } \lim_{x \rightarrow +\infty} g(x) = +\infty.$$

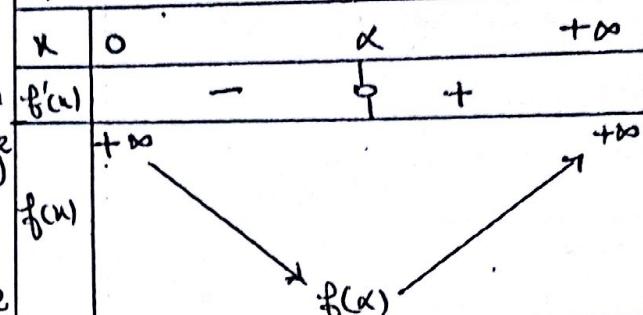
$$c) 0,705 < \alpha < 0,71.$$

$$d) \forall x \in]0; \alpha[\ g(x) < 0$$

$$\forall x \in]\alpha; +\infty[\ g(x) > 0$$

$$2) b) f'(x) = e^x - \frac{1}{x^2} = \frac{g(x)}{x^2}$$

c)



$$d) f(x) = e^x + \frac{1}{x}; x^2 e^x - 1 = 0$$

$$e^x = \frac{1}{x^2} \Rightarrow f(x) = \frac{1}{x^2} + \frac{1}{x}$$

$$\alpha \approx 0,705$$

Exercice n° 50

$$1) \sqrt{x^2 + 3} - |x| = \frac{x^2 + 3 - x^2}{\sqrt{x^2 + 3} + |x|} = \frac{3}{\sqrt{x^2 + 3} + |x|} \rightarrow 0$$

$$\sqrt{x^2 + 3} - |x| > 0 \text{ et } \sqrt{x^2 + 3} > |x|$$

$$2) \forall x \in \mathbb{R}, |x| > x \text{ et } |x| > -x$$

$$\sqrt{x^2 + 3} > |x| > -x \text{ et } \sqrt{x^2 + 3} > |x| > x$$

$$\sqrt{x^2 + 3} + x > 0 \text{ et } \sqrt{x^2 + 3} - x > 0$$

$$B/1) a) f(1) = 2 \text{ et } \lim_{x \rightarrow 1} f(x) = f(1) = 2$$

$$b) f(x) = \begin{cases} \sqrt{x^2 + 3} + x - 1 & \text{si } x \leq 1 \\ \sqrt{x^2 + 3} - x + 1 & \text{si } x > 1 \end{cases}$$

$$\lim_{x \rightarrow 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \rightarrow 1^-} \frac{6}{(\sqrt{x^2 + 3} - x + 3)} = \frac{3}{2}$$

$$\lim_{x \rightarrow 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \rightarrow 1^+} \frac{-2}{(\sqrt{x^2 + 3} + x + 1)} = -\frac{1}{2}$$

f n'est pas dérivable en 1.

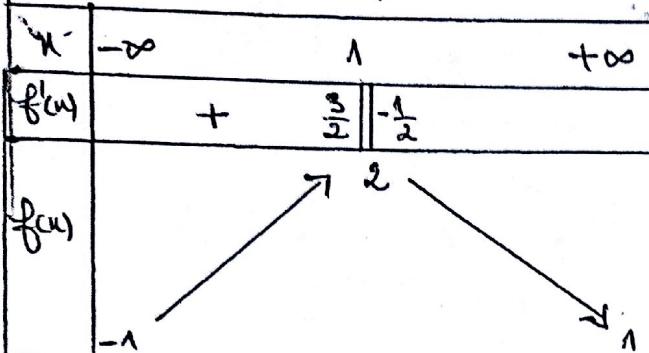
$$c) f'(x) = \begin{cases} \frac{\sqrt{x^2 + 3} + x}{\sqrt{x^2 + 3}} & \text{si } x < 1 \\ -\frac{\sqrt{x^2 + 3} - x}{\sqrt{x^2 + 3}} & \text{si } x > 1 \end{cases}$$

$$f'(x) < 0 \forall x > 1 \text{ et } f'(x) > 0 \forall x < 1$$

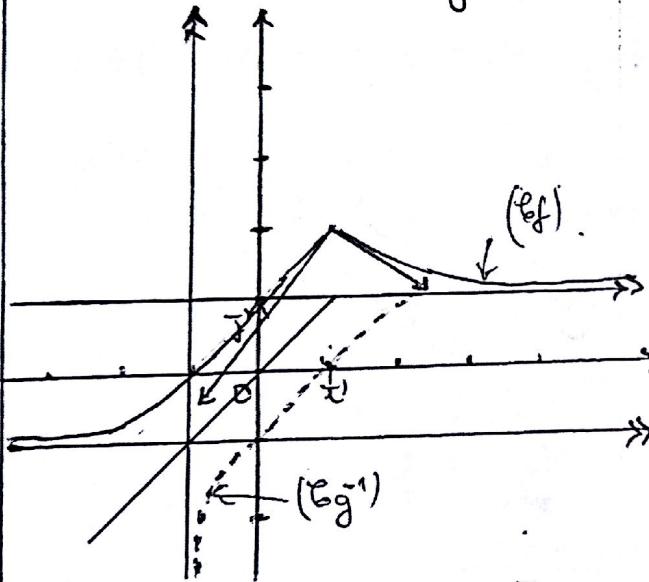
d'après A/

$$\lim_{x \rightarrow -\infty} f(x) = \lim_{x \rightarrow -\infty} \frac{3}{\sqrt{x^2+3}-x} - 1 = -1$$

$$\lim_{x \rightarrow +\infty} f(x) = \lim_{x \rightarrow +\infty} \frac{3}{\sqrt{x^2+3}} + 1 = 1.$$



e) Au point $x_0 = 1$, la courbe (f) admet un point anguleux où (f) admet deux demi-tangentes.



2) b) $\forall y \in]-1; 2]$, $x \in]-\infty; 1]$ g(x) = y

$$\sqrt{x^2+3} = y - x + 1$$

$$-y^2 - 2y + 2 = x(-y - 2).$$

$$\text{or } y \neq -1 \Rightarrow x \mapsto \frac{y^2 + 2y - 2}{2(y+1)}$$

$$g^{-1}(x) = \frac{x^2 + 2x - 2}{2(x+1)}$$

$$d) g^{-1}(x) = \frac{1}{2}x + \frac{1}{2} - \frac{3}{2x+2}$$

$$G(x) = \frac{1}{4}x^2 + \frac{1}{2}x - \frac{3}{2} \ln(x+1)$$

$$e) A = \int_0^2 [1 - g^{-1}(x)] dx = [x - G(x)]_0^2$$

$$A = \frac{3}{2} \ln 3.$$

C/1) a) $f(x) = g(x) - x$, f est dérivable sur $[1; 2]$ et $f'(x) = g'(x) - 1$ or $\forall x \in [1; 2]$ $f'(x) < 0$ donc $\forall x \in [1; 2]$ $f(x) < 0$ par suite f est strictement décroissante $f(1) = 1$ et $f(2) = \sqrt{7} - 3 < 0 \Rightarrow f(1) < f(2) < 0$ et comme f est continue d'où $f(x) = 0$ c'est à dire $f(x) = x$ admet une solution x dans I .

$$b) 1 \leq x \leq 2 \Rightarrow f(2) \leq f(x) \leq f(1)$$

$$[\sqrt{7}-1; 2] \subset [1; 2] \Rightarrow f(x) \in I$$

$$c) f'(x) = \frac{x}{\sqrt{x^2+3}} - 1 \quad f''(x) = \frac{3}{(x^2+3)\sqrt{x^2+3}}$$

donc f est croissante sur $[1; 2]$

$$1 \leq x \leq 2 \Rightarrow f'(1) \leq f'(x) \leq f'(2)$$

$$-\frac{1}{2} \leq f'(x) \leq \frac{3}{\sqrt{7}} - 1 < 0$$

$$\forall x \in I, |f'(x)| \leq \frac{1}{2}.$$

$$d) \text{D'après T.L.A.F on a: } |f(x) - \alpha| \leq \frac{1}{2}|x - \alpha|$$

2) a) $u_0 = 1 \Rightarrow u_0 \in I$; Supposons que la proposition vaille à l'ordre n ($n \in \mathbb{N}$) montrons qu'elle est aussi vaille à l'ordre $n+1$. $u_n \in I \Rightarrow f(u_n) \in I$ d'où b) c'est à dire $u_{n+1} \in I$.

b) $\forall n \in \mathbb{N}$, $u_n \in I$, il résulte de

$$\text{1d que } |f(u_n) - \alpha| \leq \frac{1}{2}|u_n - \alpha| \text{ or } f(u_n) = u_{n+1} \text{ d'où } |u_{n+1} - \alpha| \leq \frac{1}{2}|u_n - \alpha|$$

$$c) |u_1 - \alpha| \leq \frac{1}{2}|u_0 - \alpha| \quad |u_2 - \alpha| \leq \frac{1}{2}|u_1 - \alpha| \quad \dots \quad |u_n - \alpha| \leq \frac{1}{2}|u_{n-1} - \alpha|$$

$$\overbrace{|u_n - \alpha| \leq \frac{1}{2}|u_{n-1} - \alpha|}^{\dots}$$

$$|u_n - \alpha| \leq \left(\frac{1}{2}\right)^n |u_0 - \alpha| \text{ or } |u_0 - \alpha| \leq 1$$

$$|u_n - \alpha| \leq \frac{1}{2^n}$$

d) $\lim_{n \rightarrow +\infty} U_n = \lim_{n \rightarrow +\infty} \frac{1}{2^n} = 0$.

Exercice n° 51

2) a) $f(x) = \begin{cases} x - \sqrt{-x^2 - 2x + 3} & \text{si } -3 \leq x \leq 1 \\ x - \sqrt{x^2 + 2x - 3} & \text{si } x > 1 \end{cases}$

$$\lim_{n \rightarrow -3^-} \frac{f(x) - f(-3)}{x + 3} \neq \lim_{n \rightarrow -3^+} \frac{f(x) - f(-3)}{x + 3}$$

alors f n'est pas dérivable en -3 .

b) En utilisant la méthode analogue f n'est pas dérivable en 1 .

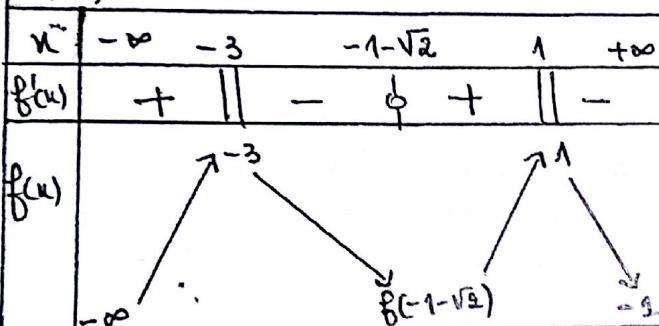
4) a) $\sqrt{x^2 + 2x - 3} < x + 1$

$$\begin{cases} x^2 + 2x - 3 < (x+1)^2 \\ x \in]-\infty; -3] \cup]1; +\infty[\end{cases} \Rightarrow S =]1; +\infty[$$

b) $-x^2 - 2x + 3 < (x+1)^2$

$$\begin{cases} -3 < x < 1 \text{ et } x < -1 \\ S =]-3; -1[\end{cases}$$

5) a)



c) b) $h^{-1}(-5)$ est la solution de l'équation

$$h(x) = -5 \Leftrightarrow x \in]-\infty; -3]$$

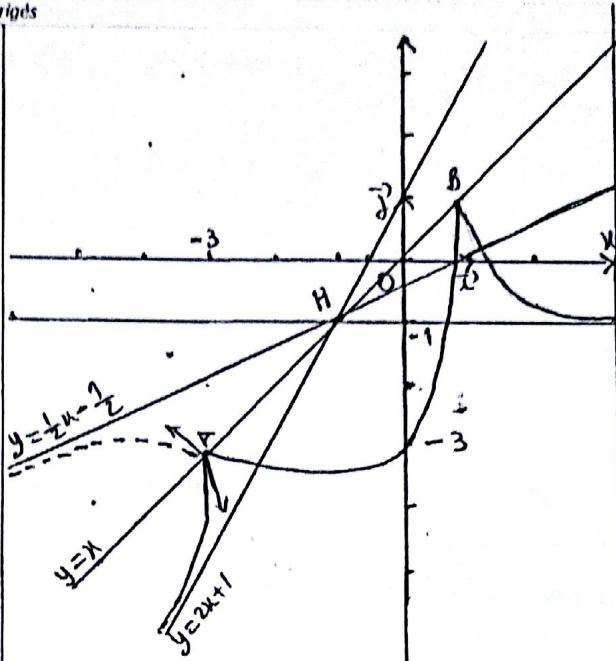
$$\begin{cases} x^2 + 2x - 3 = (x+5)^2 \\ -5 < x < -3 \end{cases} \Rightarrow h^{-1}(-5) = -\frac{7}{2}$$

$$(h^{-1})'(-5) = \frac{1}{h'(h^{-1}(-5))} = \frac{3}{8}$$

$$(T) : y = \frac{3}{8}x - \frac{13}{8}$$

c) Tracer de la courbe

Corrigés



f) Soit (f') la représentation graphique de g telle que $g(x) = f(x)$.
 $\forall x \in]-\infty; -3] \cup]1; +\infty[$

a) H milieu de $[A, B] \Rightarrow H(-1; -1)$. Soit $M(x; y); M'(x'; y') \Rightarrow M' = S_H(M)$

$$\Rightarrow \begin{cases} x' = -x - 2 \\ y' = -y + 2 \end{cases} \Rightarrow \begin{cases} x = -x' - 2 \\ y = -y' + 2 \end{cases}$$

$$M \in (f_1) \Rightarrow y = x - \sqrt{x^2 + 2x - 3}$$

$$y' = x' - \sqrt{x'^2 + 2x' - 3}$$

$$y' = g'(x) \Rightarrow M' \in (f') \text{ d'où } (f') = S_H(f).$$

Exercice n° 52

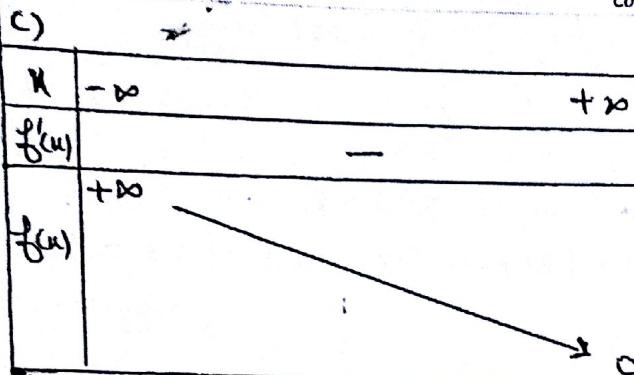
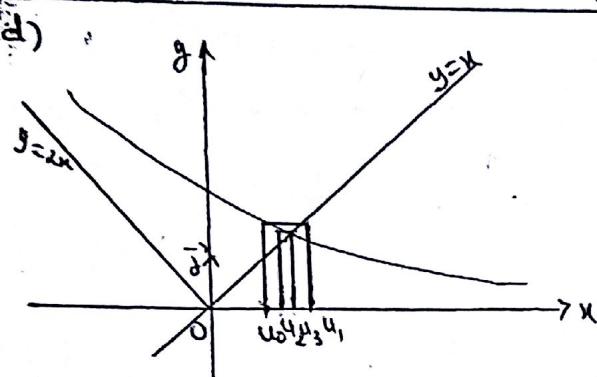
a) f est continue et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'(x) = \frac{-f(x)}{\sqrt{x^2 + 8}}$

$\sqrt{x^2 + 8} > x \Rightarrow f(x) > 0 \Rightarrow f'(x) < 0$ alors f est strictement décroissante sur \mathbb{R} .

b) $\lim_{n \rightarrow -\infty} \frac{f(n)}{n} = -2$ et $\lim_{n \rightarrow +\infty} f(n) + 2n = 0$

$y = -2x$ est une asymptote oblique à (f)

$\lim_{x \rightarrow +\infty} f(x) = 0$ alors l'axe des abscisses est une asymptote à (f) en $+\infty$.



e) $1 \leq x \leq 2 \Rightarrow f(2) \leq f(x) \leq f(1)$
 $1 \leq -2 + \sqrt{12} \leq f(x) \leq 2$
 donc $1 \leq f(x) \leq 2$.

f) On sait que $f'(x) = -\frac{f(x)}{\sqrt{x^2+8}}$
 $|f'(x)| = \frac{f(x)}{\sqrt{x^2+8}}$ et $\forall x \in [1; 2] f(x) \leq 2$
 et $\frac{1}{\sqrt{x^2+8}} \leq \frac{1}{3} \Rightarrow \frac{f(x)}{\sqrt{x^2+8}} \leq \frac{2}{3} \Rightarrow |f'(x)| \leq \frac{2}{3}$

2) a) $u_0 = 1 \Rightarrow 1 \leq u_0 \leq 2$. La propriété est vraie au premier rang. Supposons qu'elle est vraie au rang n ($1 \leq u_n \leq 2$) et montrons qu'elle est vraie au rang $n+1$
 $1 \leq u_n \leq 2 \Rightarrow f(2) \leq f(u_n) \leq f(1)$
 $1 \leq u_{n+1} \leq 2$ donc

$\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.

b) la suite (u_n) n'est ni croissante, ni décroissante mais elle semble converger. La suite (u_n) est dite «en escargot»

c) $f(x) = -2\sqrt{\frac{2}{3}} + \sqrt{4x\frac{2}{3} + 8} = 2\sqrt{\frac{2}{3}} = l$

d) $|u_{n+1} - l| \leq \frac{2}{3} |u_n - l|$

$$\begin{aligned} |u_1 - l| &\leq \frac{2}{3} |u_0 - l| \\ |u_2 - l| &\leq \frac{2}{3} |u_1 - l| \\ |u_n - l| &\leq \frac{2}{3} |u_{n-1} - l| \end{aligned} \quad \left. \begin{aligned} &|u_n - l| \leq \left(\frac{2}{3}\right)^n |u_0 - l| \text{ ou } |u_0 - l| \leq 1 \\ &\text{d'où } |u_n - l| \leq \left(\frac{2}{3}\right)^n. \end{aligned} \right\} x$$

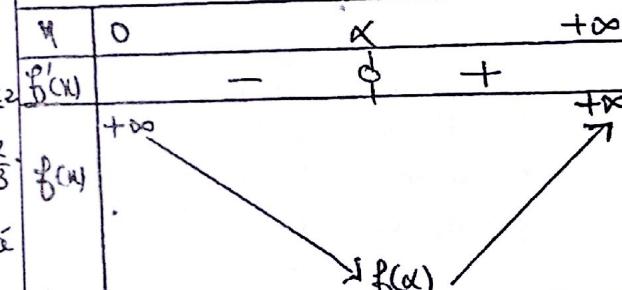
e) $\lim u_n = l$

f) $\left(\frac{2}{3}\right)^n \leq 10^{-3} \Rightarrow n > \frac{-3 \ln 10}{\ln \left(\frac{2}{3}\right)} \approx 17,04$
 $n_0 \approx 17$.

Exercice n° 55

1) b) $\forall x \in]0; +\infty[g'(x) = \frac{2x^2+1}{x} > 0$
 alors g est strictement croissante sur $]0; +\infty[$

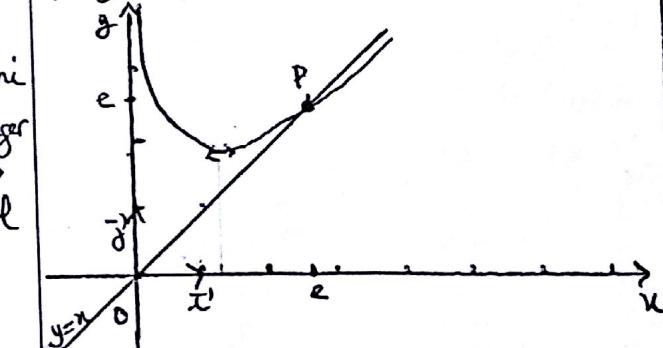
d) $\forall x \in]0; \alpha[g(x) \leq 0$ et $\forall x \in [\alpha; +\infty[g(x) > 0$
 2) b) $\forall x \in]0; +\infty[f'(x) = \frac{g(x)}{x^2}$



c) $g(x) = 0 \Rightarrow f(x) = \frac{2x^2-1}{x}$

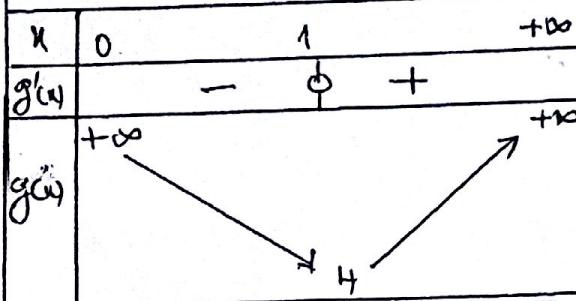
$1,8 \leq f(x) \leq 1,9$

3) $f(x) = x \Rightarrow P(x_0, x_0)$



Exercice n° 56

$$A/ g(u) = \frac{2(x^2-1)}{x}$$



4) $\forall x \in]0; +\infty[g(x) > 0$

$$B/1) f'(x) = \frac{g(x)}{2x^2}$$

2) $\forall x \in]0; +\infty[f'(x) > 0$ alors f est strictement croissante sur $]0; +\infty[$
 4) a) $\lim_{u \rightarrow +\infty} f(u) - \frac{1}{2}u = 0$ alors $y = \frac{1}{2}u$ est une asymptote oblique à la courbe (f) .

$$c) f(x) - \frac{1}{2}x = 0 \Rightarrow \ln x = \frac{1}{2} \Rightarrow x = e^{\frac{1}{2}}$$

$\forall x \in]0; \sqrt{2}[$ la droite (D) est au dessus de la courbe (f) et $\forall x \in]\sqrt{2}; +\infty[$ la courbe (f) est au dessus de la droite (D) .

Exercice n° 57

$$1) \lim_{u \rightarrow -\infty} f(u) = -\frac{1}{2} \text{ et } \lim_{u \rightarrow +\infty} f(u) = \frac{1}{2}$$

2) $f'(x) = \frac{e^x}{(e^x+1)^2} > 0$ alors f est strictement croissante sur \mathbb{R} .

$$3) f(-x) = \frac{1}{e^x+1} - \frac{1}{2} = \frac{1}{e^x+1} - \frac{1}{2}$$

$$= -\frac{e^x+1}{2(e^x+1)} = \frac{e^x+1-2e^x}{2(e^x+1)}$$

$$= \frac{1}{2} - \frac{e^x}{e^x+1} = -f(u)$$

alors f est impaire donc $0(0)$ est un centre de symétrie.

$$4) f(0) = 0$$

$\forall u \in]-\infty; 0] f(u) \leq 0$

$\forall u \in [0; +\infty[f(u) \geq 0$

$$B/1) \ln(e^x+1) - \frac{1}{2}x = \ln(e^x+1) + \ln e^{-\frac{1}{2}x}$$

$$= \ln((e^x+1) \times e^{-\frac{1}{2}x})$$

$$\ln(e^x+1) - \frac{1}{2}x = \ln(e^{\frac{x}{2}} + e^{-\frac{x}{2}})$$

$$\Rightarrow \ln(e^{-x}+1) + \frac{1}{2}x = \ln(e^{-x}+1) \cdot e^{\frac{1}{2}x}$$

$$= \ln(e^{\frac{x}{2}} + e^{-\frac{x}{2}})$$

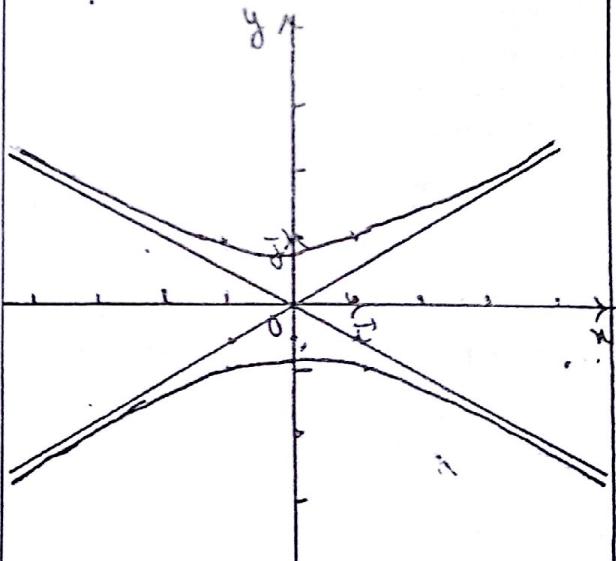
$$2) f(x) = g'(x)$$

$$3) a) \lim_{u \rightarrow +\infty} g(u) = \lim_{u \rightarrow +\infty} (1 + e^{-u}) + \frac{1}{2}u = +\infty$$

$$\lim_{u \rightarrow -\infty} g(u) = \lim_{u \rightarrow -\infty} (e^u + 1) - \frac{1}{2}u = +\infty$$

c) $f(x) - y = \ln(1 + e^{-x}) > 0$ alors (f) est au dessus de la droite (D) .

d) $g(-x) = \ln(e^{-\frac{x}{2}} + e^{\frac{x}{2}}) = g(x)$ alors g est paire alors g admet l'axe des ordonnées comme axe de symétrie



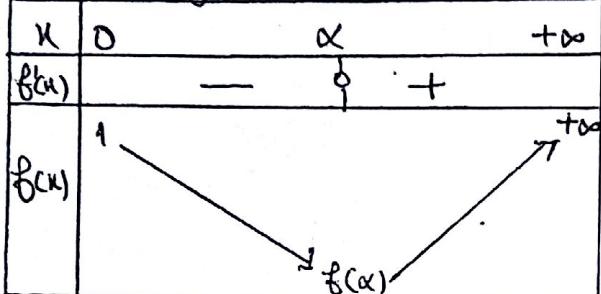
Corrigés

Exercice n° 58

I-1) $\forall x \in [0; +\infty[g'(x) = 4 + e^{-x} > 0$
alors g est croissante

4) $\forall u \in [0; \alpha] g(u) \leq 0$ et $\forall u \in [\alpha; +\infty[g(u) \geq 0$

II-1) $f'(x) = g(x)$



2) (T): $y = -x + 2$

3) a) $f(x) - p(x) = e^x > 0$ alors la courbe (f) est au dessus de la parabole P .

$$\text{III } A = \int_0^1 (f(x) - p(x)) dx = (1 - e^{-1}) \text{ cm}^2.$$

Exercice n° 59

$$\text{A/1) } \lim_{n \rightarrow +\infty} g(n) = \lim_{n \rightarrow +\infty} n \left(1 + \frac{1}{n} - \frac{e^n}{n} \right) = +\infty$$

$$\lim_{n \rightarrow -\infty} g(n) = -\infty$$

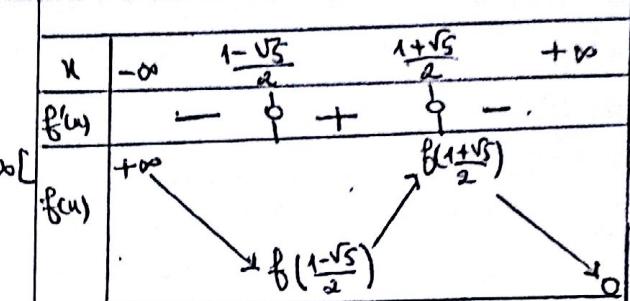
$$2) g'(x) = 1 - e^x$$

$\forall u \in]-\infty; 0] g'(u) \geq 0$ et $\forall u \in [0; +\infty[g'(u) \leq 0$, $g(0) = 0 \Rightarrow \forall u \in \mathbb{R}$, $g(u) < 0$

B/1) $\lim_{x \rightarrow -\infty} \frac{f(x)}{x} = -\infty$ alors la courbe (f) admet une branche parabolique de direction (OJ) .

$$2) \text{a) } f'(u) = 3 \left[(2u+1)e^{-u} - e^{-u}(u^2+u) \right]$$

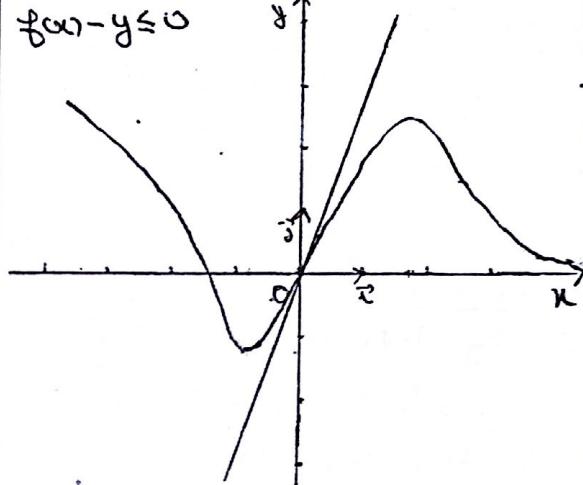
$$f'(u) = 3(-u^2+u+1)e^{-u}$$



$$3) \text{a) } y = f'(0)(x) + f(0) = 3x.$$

$$\text{b) } f(x) - 3x = 3(u^2+u)e^{-u} - 3u = \frac{3(u^2+u)}{e^u} - 3u = \frac{3(u^2+u-u^2)}{e^u} = 3u e^{-u} (u+1-e^u)$$

$$\text{c) } \forall u \in]-\infty, 0] f(u) - y \geq 0 \text{ et } \forall u \in [0, +\infty[f(u) - y \leq 0$$



$$\text{C/1) } F'(x) = (-ax^2 + (2a-b)x + b-c)e^{-x}$$

$$\begin{cases} a = -3 \\ -6 - b = 3 \\ b - c = 0 \end{cases} \Rightarrow F(x) = (-3x^2 - 9x - 9)e^{-x}$$

$$2) A = [(-3t^2 - 9t - 9)e^{-t} + 9] \text{ cm}^2$$

$$3) \lim_{t \rightarrow +\infty} A = 9 \text{ cm}^2.$$

Exercice n° 60

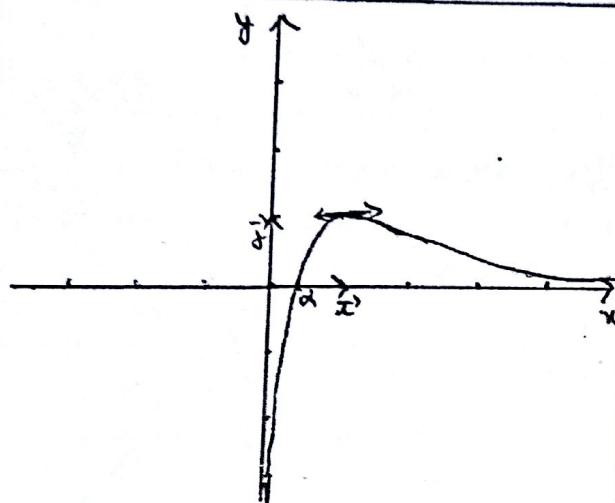
$$\text{A/2) } f'(x) = -1 - \frac{2}{x} \text{ Lorsque } x \in]0; +\infty[$$

alors f est décroissante sur $]0; +\infty[$

$$3) \forall x \in]0; 1] f(x) \geq 0 ; \forall x \in [1; +\infty[f(x) \leq 0$$

B/ 2) $f'(u) = \frac{f(u)}{u^3}$

x	0	1	$+\infty$
$f'(u)$	+	0	-
$f(u)$	$-\infty$	1	$+\infty$



Exercice n° 61

I/ 1) $Dg =]-2, +\infty[$; $g'(u) = \frac{2u^2 + 8u + 9}{u+2}$

$g'(u) > 0$ alors g est strictement croissante sur $]-2, +\infty[$.

$$\lim_{u \rightarrow -2^+} g(u) = -\infty; \lim_{u \rightarrow +\infty} g(u) = +\infty$$

$$g(-1) = 0 \text{ alors } \forall x \in]-2, -1] \quad g(x) \leq 0$$

$$\text{et } \forall u \in [-1, +\infty[\quad g(u) \geq 0.$$

I/ 2) $f'(u) = \frac{g(u)}{(u+2)^2}$

u	-2	-1	$+\infty$
$f'(u)$	-	+	+
$f(u)$	$+\infty$	$-\infty$	$+\infty$

3) a) $\lim_{u \rightarrow -2^+} f(u) = +\infty \Rightarrow u = -2$ est une asymptote verticale à la courbe (f) .

$\lim_{u \rightarrow +\infty} f(u) - y = 0 \Rightarrow y = 1$ est une asymptote horizontale à la courbe (f) en $+\infty$.

b) $f(u) - y = 0 \Rightarrow u = -1 \quad (-1, -1)$

$\forall x \in]-2, -1] \quad f(u) - y \geq 0$ et $\forall x \in [-1, +\infty[\quad f(u) - y \leq 0$

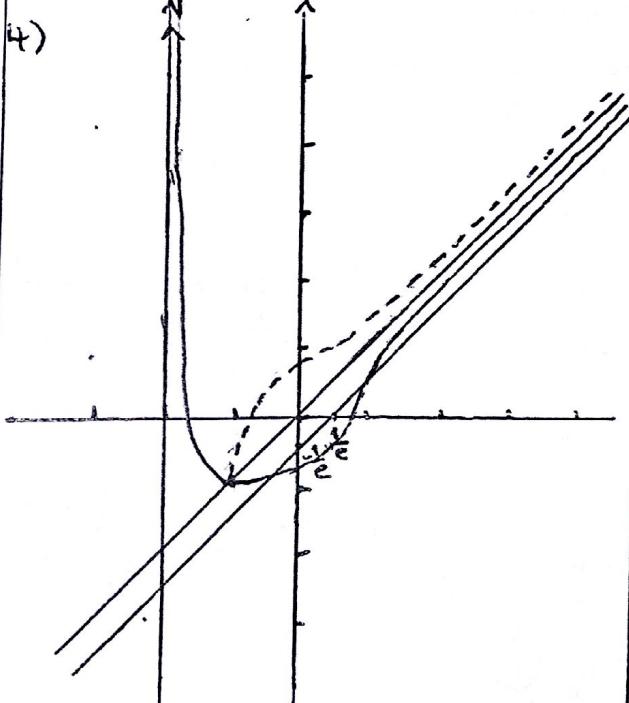
c) $f'(-1) = 1 \Rightarrow \frac{g(-1)}{(-1+2)^2} = 1$

$$\Rightarrow \ln(-1+2) = 1 \Rightarrow -1+2 = e \Rightarrow -1 = e-2$$

$$f(e-2) = e-2 - \frac{1}{e} \cdot B(e-2, e-2 - \frac{1}{e})$$

(T): $y = x - \frac{1}{e}$

4)



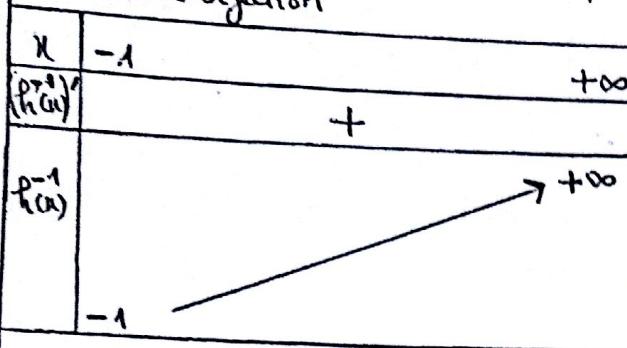
5) $Dh = [-1, +\infty[$

a) $\forall u \in [-1, +\infty[$, h est continue dérivable et strictement croissante de plus $\lim_{u \rightarrow +\infty} h(u) = +\infty$ et $h(-1) = -1$

alors h réalise une bijection

de $[-1; +\infty[$ vers $[-1; +\infty[$ par conséquent
h est une bijection

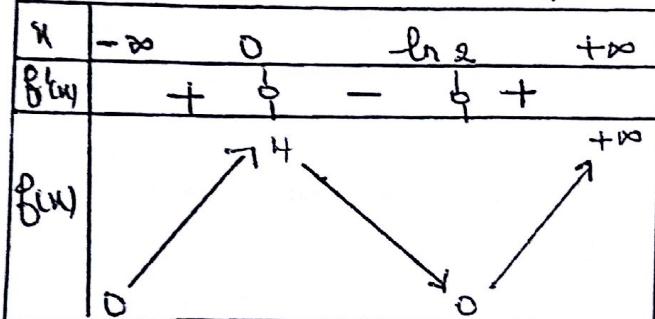
Corrigés



Exercice n° 64

A/ 2) $\lim_{x \rightarrow -\infty} f(x) = 0$

3) a) $f'(x) = 4e^{2x}(e^x - 1)(e^x - 2)$



B) 2) $F(x) = \left[\frac{1}{4}e^{4x} - \frac{2}{3}e^{3x} + 2e^x \right]_{\ln 2}^x$

Exercice n° 65

A/ 1) $g'(x) = \ln x + 1$

$\forall u \in]0; e^1]$ $g'(u) \geq 0$ et $\forall u \in]e^1; +\infty[$

$g'(u) \geq 0$. $g(\frac{1}{e}) = \frac{e-1}{e} > 0$ alors

$\forall u \in]0; +\infty[$, $g(u) > 0$

B/ 1) b) $\lim_{n \rightarrow 0^+} \frac{f(n) - f(0)}{n} = \lim_{n \rightarrow 0^+} \frac{1}{1+n+\ln n}$

$\lim_{n \rightarrow 0^+} \frac{f(n) - f(0)}{n} = 1$ alors f est
dérivable en 0 et $f'(0) = 1$.

c) $y = f'(0)(x-0) + f(0) = x$.

d) $f(x) - x = \frac{x^2 \ln x}{1+x \ln x}$

$\forall u \in]0; 1]$ $f(u) - u \geq 0$ alors la courbe

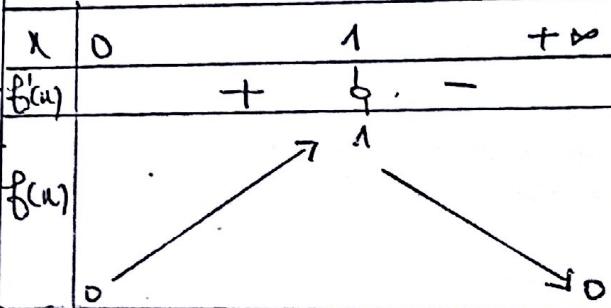
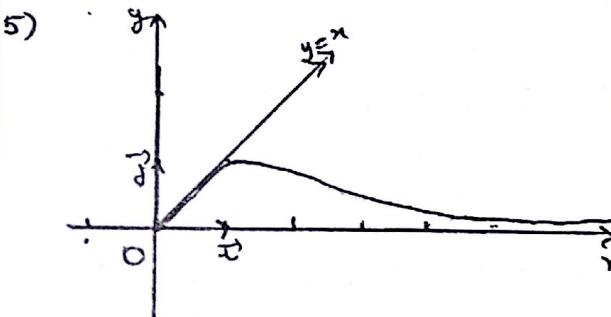
(f) est au dessus de la tangente (T).

$\forall u \in [1; +\infty[$ $f(u) - u \leq 0$ alors la tangente

(T) est au dessus de la courbe (f).

2) $\lim_{u \rightarrow +\infty} f(u) = 0$ alors $y=0$ est une
asymptote horizontale à la courbe

(f).



C/ a) D'après le tableau de
variation, $f(u) \leq 1$.

b) $1 < x < e \Rightarrow 0 < \ln x < 1$

$1 < 1 + u \ln x < x + 1 \Rightarrow \frac{x}{u+1} \leq f(u) \leq x$
or $\frac{x}{u+1} = 1 - \frac{1}{u+1}$ d'où $1 - \frac{1}{u+1} \leq f(u)$

3) $\int_1^e \left(1 - \frac{1}{u+1}\right) 16 \text{ cm}^2 du \leq A \leq \int_1^e x 16 \text{ cm}^2$

$\left[u - \ln(u+1) \right]_1^e \times 16 \text{ cm}^2 \leq A \leq \left[x \right]_1^e \times 16 \text{ cm}^2$.

Exercice n° 66

$$A/2) g'(x) = \frac{(x-1)(3x^2+3x+2)}{x}$$

$\forall x \in]0; 1]$ $g'(x) \leq 0$ et $\forall x \in [1; +\infty[g'(x) > 0$

$g(1) = 1 > 0$ alors $\forall x > 0$, $g(x) > 0$

3) a) $D_f =]0; +\infty[$.

$$\lim_{x \rightarrow +\infty} f(x) = +\infty \text{ et } \lim_{x \rightarrow 0^+} f(x) = -\infty$$

b) $x=0$ est une asymptote verticale

et $\lim_{x \rightarrow +\infty} f(x) - (x+1) = 0$ alors $y = x+1$ est une asymptote oblique à (f) .

4) a) si $f'(x) = 1 + \frac{1}{x} > 0$ alors f est strictement croissante sur \mathbb{R}_+^* .

D'après ce qui précède, f définit une bijection de $]0; +\infty[$ vers \mathbb{R} , $f(x)$ prend donc des valeurs positives et négatives.

b) D'après ce qui précède $\ln x = 0$ admet une solution unique x soit $M(x; y)$ un point du plan

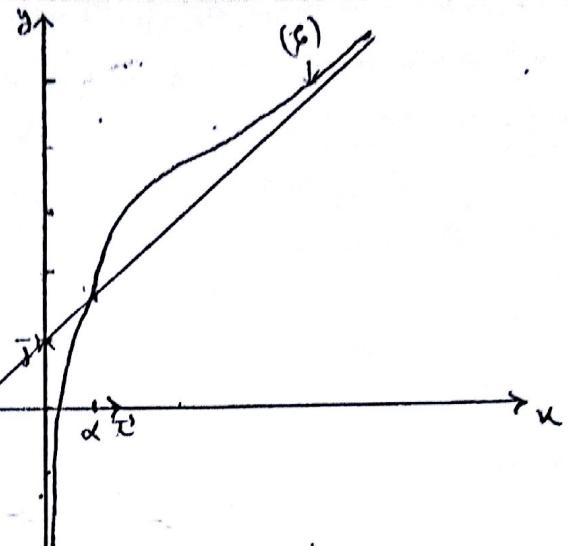
$$f(x) = y \Rightarrow x + \ln(x) = 0 \Rightarrow \ln(x) = -x$$

$$\ln(0,56) \times \ln(0,57) < 0 \Rightarrow 0,56 < x < 0,57$$

c) $\forall x \in]0; \alpha]$ la courbe (f) est en dessous de la droite (D) et $\forall x \in [\alpha; +\infty[$ la courbe (f) est au dessus de la droite (D) .

d) $f'(x) = \frac{g(x)}{x^2} > 0$ alors f est strictement croissante sur \mathbb{R}_+^*

e) La fonction f est continue, et strictement croissante sur \mathbb{R}_+^* avec $\lim_{x \rightarrow 0^+} f(x) = -\infty$ et $\lim_{x \rightarrow +\infty} f(x) = +\infty$. f définit une bijection de $]0; +\infty[$ vers \mathbb{R} . Ainsi il existe un unique $\beta > 0$ tel que $f(\beta) = 0$.



B/1) $m < 0$, $f'_m(x) = \frac{x^2 - m}{2x} > 0$ alors f_m est croissante sur \mathbb{R}_+^*

$m = 0$ $f'_0(x) = \frac{x}{2} > 0$ alors f est strictement croissante sur \mathbb{R}_+^* .

$$m > 0 ; f'_m(x) = 0 \Rightarrow x = \sqrt{m}$$

$\forall x \in]0; \sqrt{m}[$ f est décroissante et $\forall x \in [\sqrt{m}; +\infty[$ f est croissante.

$$2) M_0(x_0; y_0) \in \Gamma_m \Rightarrow y_0 = f(x_0)$$

$$m = \frac{x_0^2 - 4y_0 - 1}{2\ln x_0} : \text{ cette équation}$$

d'inconnue m admet une seule solution pour $x_0 > 0$ et $x_0 \neq 1$.

$$3) y = f_m(x) \Rightarrow m \ln x = \frac{x^2 - 1}{4} - y$$

$$\begin{cases} \ln x = 0 \\ y = \frac{x^2 - 1}{4} \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 0 \end{cases} \text{ le point } A\left(\frac{1}{0}\right)$$

appartient à toutes les courbes (Γ_m) .

Exercice n° 67

$$A/1) g'(x) = -2x - \frac{1}{x} < 0 \text{ et } g(1) = 0$$

$\forall x \in]0; 1]$, $-f(x) > 0$ et $\forall x \in [1; +\infty[f(x) < 0$

$$B/2) f'(x) = \frac{g(x)}{x^2} \text{ alors } f'(x) \text{ dépend du signe de } g(x)$$

$$3) f(x) - y = \frac{\ln x}{x}$$

$\forall x \in]0; 1]$ la droite (D) est au dessus de la courbe (C) et $\forall x \in [1; +\infty[$, la courbe (B) est au dessus de la droite (D).

$$4) f'(x_0) = -1 \Rightarrow \ln x_0 = 1 \Rightarrow x_0 = e \\ A(e; -e).$$

Exercice n° 68

$$A/ 1) g'(x) = (x-2)e^{-x}$$

x	0	2	$+\infty$
$g'(x)$	-	0	+
$g(x)$	0	$-1 - e^{-2}$	$+\infty$

$\forall x \in [0; +\infty[$, $g(x) \leq 0$

$$B/ 1) f'(x) = e^{-x} - x e^{-x} - 1 = g(x)$$

2) $\forall x \in [0; +\infty[$, f est dérivable

$$3) f(x) - y = x e^{-x} > 0 \forall x \in [0; +\infty[$$

$$C/ 2) f(x) = f(x) \Rightarrow x(e^{-x} - \frac{1}{x}) = 0$$

$$x=0 \text{ ou } x = \ln 2 \Delta \left(\ln 2; -\frac{\ln 2}{2} + 4 \right)$$

Exercice n° 69

1) a) $\Psi'(x) = 1 + \frac{2}{x} > 0$ alors Ψ est strictement croissante sur $]0; +\infty[$.
 $\lim_{x \rightarrow 0^+} \Psi(x) = -\infty$, $\lim_{x \rightarrow +\infty} \Psi(x) = +\infty$.

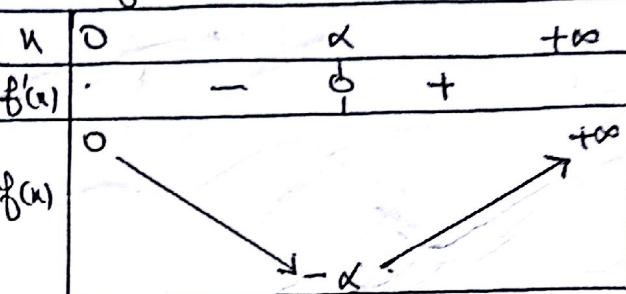
c) $\forall x \in]0; \alpha]$ $\Psi(x) \leq 0$ et $\forall x \in [\alpha; +\infty[$ $\Psi(x) > 0$

$$2) \lim_{x \rightarrow 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0} \frac{2 \ln x}{x+2} = -\infty$$

alors f n'est pas dérivable en 0 mais elle admet une demi-tangente verticale sur la courbe (B) !

c) $\lim_{x \rightarrow +\infty} \frac{f(x)}{x} = +\infty$ alors (B) admet une branche parabolique de direction (0,0).

d) $f'(x) = \frac{2 \Psi(x)}{(x+2)^2}$ alors $f'(x)$ dépend du signe de $\Psi(x)$

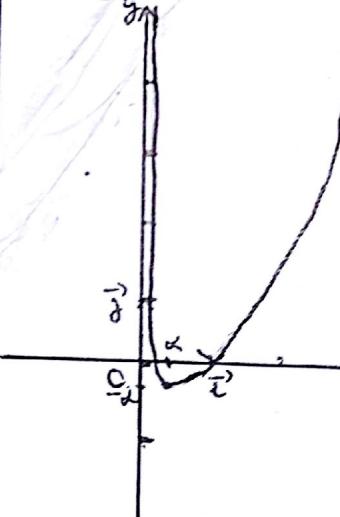


$$g) f(x) = 0 \Rightarrow x=0 \text{ ou } \ln x = 0$$

$$x=1 = \beta.$$

$$h) f(1) = 0 \quad f'(1) = \frac{2}{3}$$

$$y = \frac{2}{3}(x-1).$$



Exercice n° 70 (voir les méthodes détaillées de la résolution de l'exercice n° 69)

Exercice n° 71

$$1) \lim_{x \rightarrow 0} f(x) = -\infty \text{ alors } x=0 \text{ est}$$

une asymptote verticale à la courbe (f).

$\lim_{x \rightarrow +\infty} f(x) = 0$ alors $y = 0$ est une asymptote horizontale.

$$2) b) -1 - 2\ln x > 0 \Rightarrow x < e^{-\frac{1}{2}}$$

c)

x	0	$\frac{1}{\sqrt{e}}$	$+\infty$
$f'(x)$	+	0	-
$f(x)$	$-\infty$	$\frac{e}{2}$	0

$$3) a) \frac{d}{dx} f(x) = 0 \Rightarrow 1 + \ln x = 0 \Rightarrow x = e^{-1}$$

$I(e^{-1}; 0)$

$$4) b) I_2 = \int_{e^{-1}}^e \left(\frac{1}{x^2} + \frac{\ln x}{x^2} \right) dx$$

$$\int_{e^{-1}}^e \frac{\ln x}{x^2} dx = \left[-\frac{1}{x} \ln x \right]_{e^{-1}}^e + \int_{e^{-1}}^e \frac{1}{x^2} dx$$

$$I_2 = \left[-\frac{1}{x} - \frac{1}{x} \ln x - \frac{1}{x} \right]_{e^{-1}}^e = \frac{1}{e^2} - \frac{2 \ln 2}{e^2}$$

b) $F(x) = \frac{1 + \ln x}{x}$ d'où F est la primitive de f .

$$c) I_n = \frac{1}{e^{-1}} - \frac{2 \ln n}{n}$$

$$d) \lim_{n \rightarrow +\infty} I_n = \frac{1}{e^{-1}}$$

Exercice n° 42

$$1) D_f =]-\infty, 1[\cup]1; +\infty[$$

$$f'(x) = \frac{x-2}{(x-1)^2}$$

$$\forall x \in]-\infty, 1[\cup]1; 2[\quad f'(x) < 0$$

$$\forall x \in]2; +\infty[\quad f'(x) > 0$$

Corrigés

x	1	2	$+\infty$
$f'(x)$	-	0	+
$f(x)$	$+\infty$	$+\infty$	$+\infty$

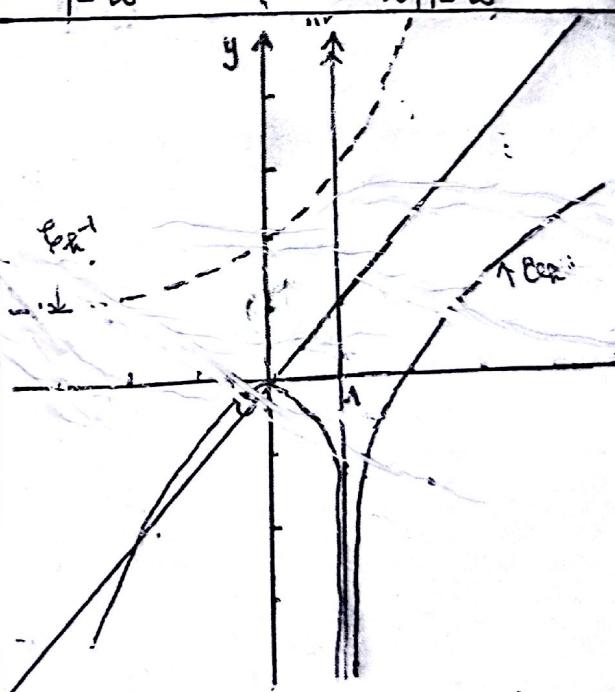
$$f(0) = 0$$

$$\forall x \in]-\infty; 0] \cup]1; +\infty[\quad f(x) \geq 0$$

$$\forall x \in [0; 1[\quad f(x) \leq 0$$

$$2) g'(x) = \frac{x}{x-1} + \ln(x-1)$$

x	$-\infty$	0	1	$+\infty$
$g'(x)$	+	0	-	+
$g(x)$	$-\infty$	0	$-\infty$	$+\infty$



3) $\forall x \in]1; +\infty[$, f est continue, dérivable et strictement croissante. Elle réalise donc une bijection de $]1; +\infty[$ vers \mathbb{R} , par conséquent, elle

voisinage de $+\infty$.

6) a) f est continue et strictement croissante sur $[1; +\infty[$ et $]2; +\infty[$ est inclus dans $]1; +\infty[$ donc f est continue et strictement croissante sur $]2; +\infty[$. De plus $f_1(2) = -\frac{1}{2}$ et $\lim_{x \rightarrow +\infty} f(x) = +\infty$ donc il existe un unique réel α tel que $f(\alpha) = 0$

b) (T_2) : $y = f'(2)(x-2) + f(2)$

$$y = \frac{7 - \ln 2}{4}x - \frac{7}{2}.$$

7) $f(x) = \frac{x^2}{2} - 2x - \frac{\ln x}{x}$

$$F(x) = \frac{1}{6}x^3 - 2x^2 - \frac{1}{2}(\ln x)^2 + k$$

$$F(1) = 0 \Rightarrow k = \frac{11}{6}.$$

Exercice n° 75

2) $\lim_{x \rightarrow -\infty} f(x) - (x+4) = 0$ alors

$y = x+4$ est une asymptote oblique en (f) en $-\infty$.

$\lim_{x \rightarrow +\infty} f(x) - x = 0$ alors $y = x$ est asymptote oblique à (f) en $+\infty$.

3) $f(x) - (x+4) = \frac{-4e^x}{1+e^x} < 0$

$$f(x) - x = \frac{4}{1+e^x} > 0.$$

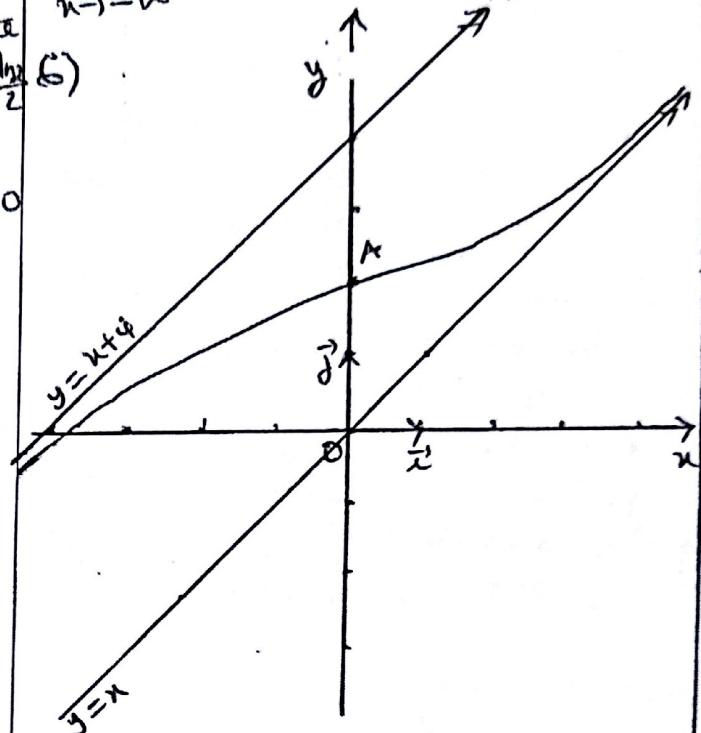
4) $f(x) + f(-x) = 4$

$$\frac{x+4}{1+e^x} - x + \frac{4}{1+e^{-x}} = \frac{4}{1+e^x} + \frac{4e^x}{1+e^x} = 4$$

d'où $A(0; 2)$ est un centre de symétrie.

5) $f'(x) = 1 + 4 \left(\frac{-e^x}{(1+e^x)^2} \right)$

$-f'(x) = \frac{(e^x - 1)^2}{(e^x + 1)^2} > 0$ alors f est strictement croissante sur \mathbb{R} .
 $\lim_{x \rightarrow -\infty} f(x) = -\infty$ et $\lim_{x \rightarrow +\infty} f(x) = +\infty$



7) $A = \int_0^{\alpha} \left(x+4 - \frac{4e^x}{1+e^x} \right) \times 4 \, dx$

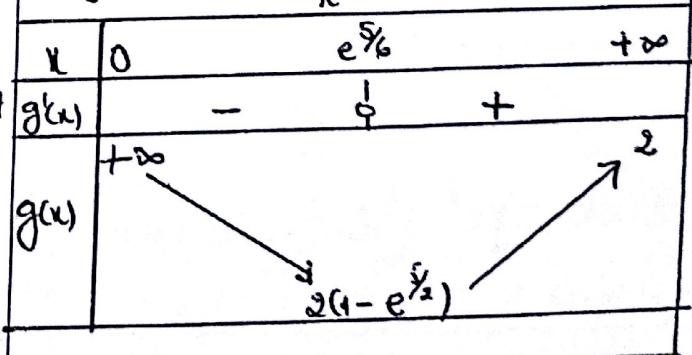
$$A = \left[\frac{1}{2}x^2 + 4x - 4 \ln(1+e^x) \right]_0^{\alpha} \times 4 \, cm^2$$

Exercice n° 76

1) $\lim_{x \rightarrow 0^+} g(x) = \lim_{x \rightarrow 0^+} \frac{1}{x^3} (2x^3 + 3 - 6 \ln x) = +\infty$

$$\lim_{x \rightarrow +\infty} g(x) = 2 =$$

$$2) g'(x) = \frac{-15 + 18 \ln x}{x^4}$$



admet une bijection réciproque

Exercice n° 73

A/1) a) $D_f = \mathbb{R} \setminus \{1\}$; $f'(x) = \frac{u}{u-1}$

u	$-\infty$	0	1	$+\infty$
$f'(u)$	+	0	-	+
$f(u)$	$-\infty$	$\nearrow 0$	$\searrow -\infty$	$+\infty$

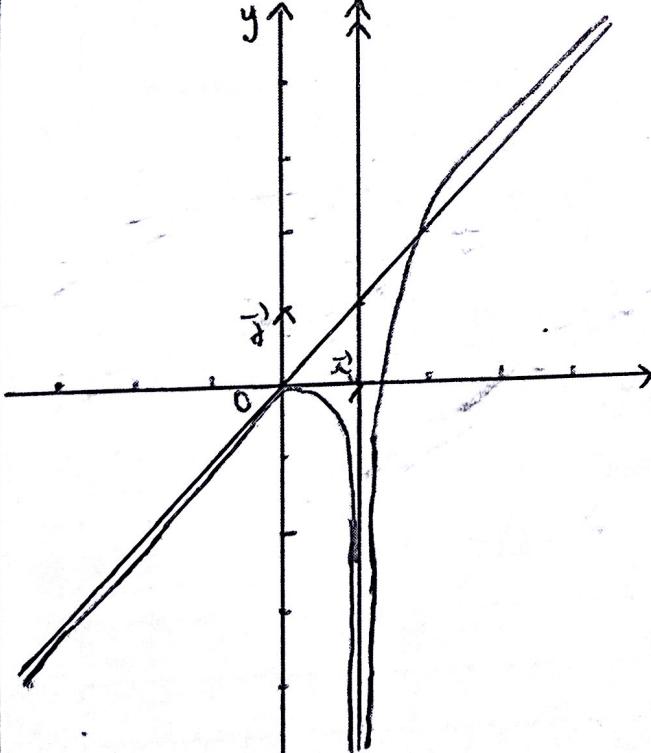
b) Démontrer que $f(x) = 0 \forall x \in]1; +\infty[$

2) a) $\lim_{u \rightarrow -\infty} \frac{f(u)}{u} = 1$ et $\lim_{u \rightarrow -\infty} f(u) - u = 0$

alors $y = x$ est une asymptote oblique à la courbe (f) .

b) $(T_{\frac{1}{2}})$: $y = f'(\frac{1}{2})(x - \frac{1}{2}) + f(\frac{1}{2})$

(T_{1-e}) : $y = \frac{e-1}{e}x + \frac{1}{e}$



3) $A(t) = -\frac{1}{2}t^2 - \int_0^t \ln(1-u) dt \quad x=u$

$u = \ln(1-x)$ $u' = \frac{1}{1-u}$ $v^t = 1$ $v = u$

$$A(t) = \left[-\frac{1}{2}t^2 + t + (1-t)\ln(1-t) \right] \times 4 \text{ cm}^2$$

$$\lim_{t \rightarrow 1} A(t) = 2 \text{ cm}^2.$$

B/1) a) $z^2 = 2i$; $P(z) = (z-2i)Q(z)$

$$Q(z) = z^2 + (1+3i)z - 4 + 3i \Rightarrow \Delta = (3-i)^2$$

$$\beta = \{2i; 1-2i; -2-i\}$$

2) a) $S(A) = B \Rightarrow z' = (-1-i)z - 1$
 $S(I) = C$

3) $u! + iy' = (-1-i)(u+iy) - 1$

$$\begin{aligned} y' &= -u+y-1 \\ y' &= -u-y \end{aligned}$$

Exercice n° 74

A/1) $g'(u) = \frac{3u^3+1}{u} > 0$ alors g est strictement croissante.

$g(1) = 0$ donc $\forall u \in [0, 1] g(u) \leq 0$
 $\text{et } \forall u \in [1, +\infty[g(u) \geq 0$

B/2) $f'(u) = \frac{g(u)}{u^2}$ alors $f'(u)$ dépend du signe de $g(u)$

u	0	1	$+\infty$
$f'(u)$	-	0	+
$f(u)$	$+\infty$	\nearrow	$-\frac{1}{2}$

4) a) $f(x) - y = -\frac{\ln x}{x}$

$\forall u \in]0, 1[f(u) - y > 0$ et $\forall u \in]1, +\infty[f(u) - y < 0$

$\lim_{u \rightarrow +\infty} f(u) - y = 0$ alors P est une courbe asymptotique au

$\forall u \in \mathbb{R}^*, g(u) > 0$

B/ 1) $f'(u) = g(u)$

u	0	$+\infty$
$f'(u)$	+	
$f(u)$		$+\infty$

2) $\lim_{u \rightarrow +\infty} f(u) - y = 0$ alors $y = 2u$
est une asymptote oblique à la courbe (f) en $+\infty$.

$\forall u \in]0; 1[\quad f(u) - y < 0$ et $\forall u \in [1; +\infty[$
 $f(u) - y > 0$

$$4) A = \int_1^e (f(u) - y) du \text{ cm}^2 = \int_1^e -3 \frac{\ln u}{u^2} du$$

$$u = \ln x, \quad u' = \frac{1}{u}, \quad u = \frac{1}{u} \text{ et } u' = -\frac{1}{u^2}$$

$$A = -3 \left[\frac{1 + \ln u}{u} \right]_1^e = \left(3 - \frac{6}{e} \right) \text{ cm}^2 = 0,79 \text{ cm}^2$$

Exercice n° 78

$$f(u) = -u + \ln \left| \frac{1+u}{1-u} \right|$$

4) $u+u \neq 0$ et $1-u \neq 0$

$$Df = \mathbb{R} \setminus \{-1; 1\} = \mathbb{R} \setminus \{-1; 1\} \cup]-\infty; -1[\cup]1; +\infty[.$$

b)

	$-\infty$	-1	1	$+\infty$
$ 1+u $	$-1-u$	$1+u$	$1+u$	
$ 1-u $	$-1+u$	$-1+u$	$1-u$	

$$f(u) = \begin{cases} f(u) = -u + \ln \left(\frac{1+u}{1-u} \right) & \text{si } u \in]-\infty; -1[\\ f(u) = -u + \ln \left(\frac{1+u}{-1+u} \right) & \text{si } u \in]-1; 1[\\ f(u) = -u + \ln \left(\frac{1+u}{1-u} \right) & \text{si } u \in]1; +\infty[\end{cases}$$

$$f(-u) = u + \ln |1-u| - \ln |1+u| = -\left(-u + \ln \left| \frac{1+u}{1-u} \right| \right)$$

$$2) f'(u) = -1 + \frac{\left(\frac{1+u}{1-u} \right)'}{1+u} = -1 + \frac{\frac{2}{(1-u)^2}}{1+u} = -1 + \frac{2}{(1-u)^2}$$

$$f'(u) = -1 + \frac{2}{1-u^2} = \frac{u^2+1}{1-u^2}$$

u	$-\infty$	-1	1	$+\infty$
$f'(u)$	-	+	+	-
$f(u)$	$+\infty$	$-\infty$	$+\infty$	$-\infty$

3) a) $\lim_{u \rightarrow +\infty} f(u) - y = 0$ alors $y = -u$
est une asymptote oblique à la courbe (f) .

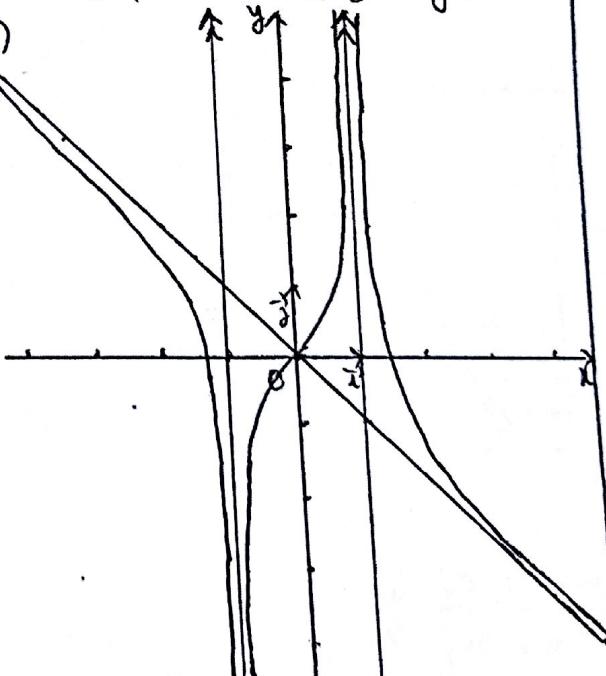
$x = -1$ et $u = 1$ sont les asymptotes verticales.

$$f(u) - y = \ln \left| \frac{1+u}{1-u} \right| \Rightarrow \frac{1+u}{1-u} = u \Rightarrow u = 0$$

$\forall u \in]-\infty; -1[\cup]-1; 0[\quad f(u) - y < 0$

$\forall u \in]0; 1[\cup]1; +\infty[\quad f(u) - y > 0$

5)



Exercice n° 79

A/ 2) $\forall x \in [0; 1], g'(x) = \frac{x^2 + 5x + 4}{x(2+x^2)} > 0$ alors
 g est strictement croissante sur $[0; 1]$
 $\lim_{x \rightarrow 0} g(x) = -\infty$ et $\lim_{x \rightarrow 1} g(x) = g(1) = \frac{2}{3}$

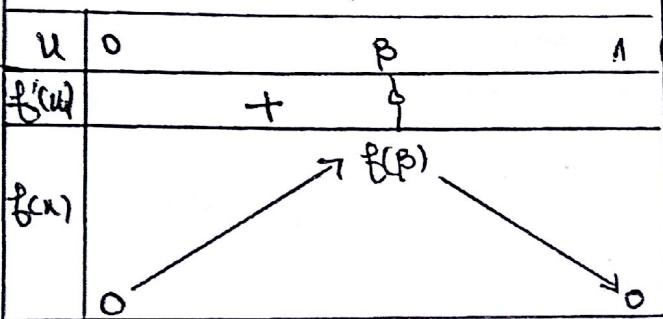
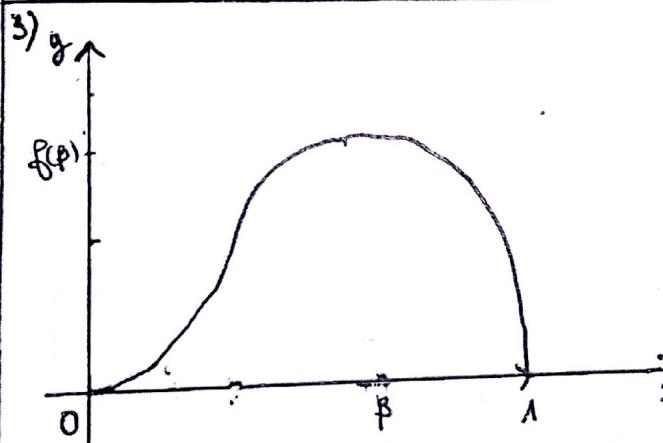
3) $\forall x \in [0; \beta]$ $g(x) \leq 0$ et $\forall x \in [\beta; 1]$ $g(x) > 0$

B/ a) $\lim_{x \rightarrow 0} f(x) = \lim_{x \rightarrow 0} -\frac{x}{1+x} \times x \ln x = 0$

alors f est continue en 0.

$$\begin{aligned} \text{2) b) } f'(x) &= \frac{(-2x \ln x - x)(1+x) + x^2 \ln x}{(1+x)^2} \\ &= -\frac{x[1+x + (x+2) \ln x]}{(1+x)^2} \\ &= -\frac{x(x+2) \left[\frac{1+x}{x+2} + \ln x \right]}{(1+x)^2} \end{aligned}$$

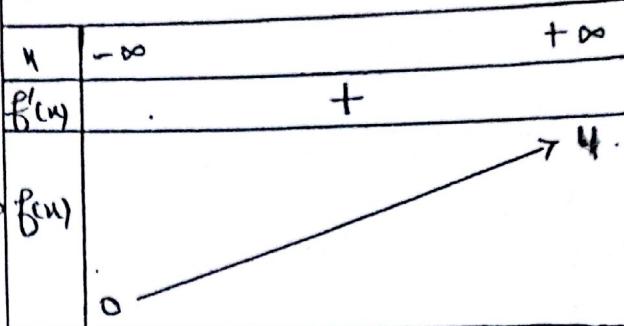
$$\text{d'où } f'(x) = -\frac{x(x+2)g(x)}{(1+x)^2}$$



Exercice n° 80

$$1) \forall x \in \mathbb{R}, f'(x) = \frac{4e^x}{(e^x + 1)^2} > 0$$

Corrigés

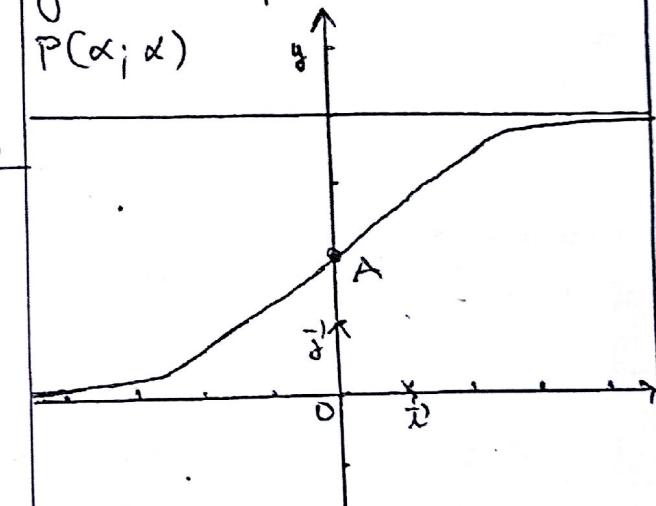


$$b) \forall x \in \mathbb{R}, g'(x) = -\frac{(e^x - 1)^2}{(e^x + 1)^2} < 0$$

donc la fonction g est strictement décroissante sur \mathbb{R} .

$$2) a) \left\{ \begin{array}{l} y = f(x) \\ x = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x = 0 \\ y = 2 \end{array} \right. A(0, 2)$$

(T) : $y = x + 2$; b) $\forall x \in \mathbb{R}, -x \in \mathbb{R}$,
 $f(-x) + f(x) = 4$ donc A est un centre de symétrie pour la courbe (f). c) $f(x) = x \Rightarrow f(x) - x = 0$
 $g(x) = 0$ d'après 1. c) $x = \alpha$



3) la fonction f est continue et strictement croissante donc f est une bijection de \mathbb{R} sur $[0; 4]$ par conséquent, elle admet une bijection réciproque f^{-1} . $\forall x \in \mathbb{R}$, $f'(x) \neq 0$ donc f^{-1} est dérivable sur $[0; 4]$

f' est strictement croissante sur $]0; 4[$.

b) $f(0) = 2 \Rightarrow f^{-1}(2) = 0 \quad (f^{-1})'(2) = 1$

4) b) $I_n = \int_{\ln n}^{\ln(n+1)} f(u) du = [4 \ln(1+e^u)]_{\ln n}^{\ln(n+1)}$

$I_n = 4 \ln \frac{n+2}{n+1}; S_n = I_1 + I_2 + \dots + I_n = \int_0^{\ln(n+1)} f(u) du$

$S_n = 4 \ln \frac{n+2}{2}$.

c) $A_1(x) = -2x^2 + 16 \ln(1+e^x) - 16 \ln 2$.

Exercice n° 81

I/ $g(x) = e^x + x + 1$

1) $g'(x) = e^x + 1 > 0$ alors g est strictement croissante sur \mathbb{R} .

3) $\forall x \in]-\infty, \alpha] \quad g(x) \leq 0$

$\forall x \in [\alpha; +\infty[\quad g(x) \geq 0$

II 1) $\lim_{x \rightarrow -\infty} f(x) = 0$ alors $y = 0$ est une asymptote horizontale.

2) $\lim_{x \rightarrow +\infty} f(x) = +\infty$

3) $f'(x) = \frac{e^x g(x)}{(e^x + 1)^2}$ alors $f'(x)$

dépend du signe de $g(x)$

x	$-\infty$	α	$+\infty$
$f'(x)$	—	0	+

x	$-\infty$	α	$+\infty$
$f'(x)$	—	0	+

x	$-\infty$	α	$+\infty$
$f(x)$	0	+	+

x	$-\infty$	α	$+\infty$
$f(x)$	0	+	+

5) $f'(0) = \frac{1}{2} \Rightarrow (T): y = \frac{1}{2}x$

6) $f(x) - y = \frac{x(e^x - 1)}{(e^x + 1)}$

$\forall x \in \mathbb{R}, f(x) - y > 0$ alors

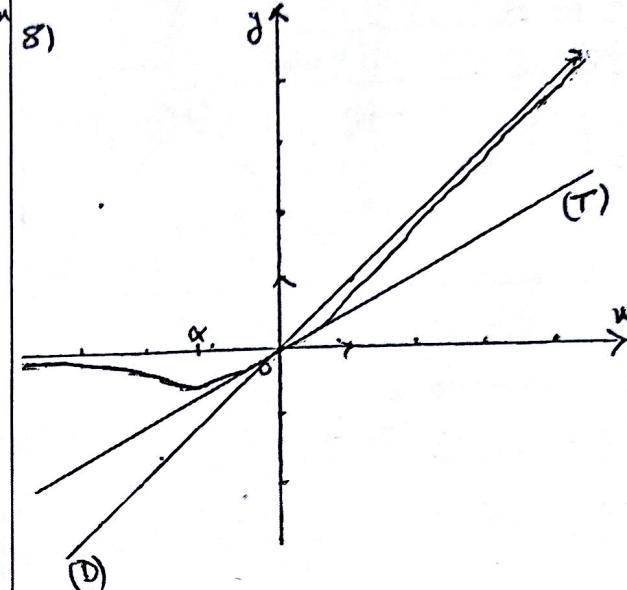
la courbe (f) est au dessus de la tangente (T) .

7) $f(x) - y = \frac{-x}{e^x + 1}$

$\forall x \in]-\infty; 0] \quad f(x) - y \geq 0$

$\forall x \in [0; +\infty[\quad f(x) - y \leq 0$

8)



Exercice n° 82

I/ $g(x) = 4e^x - 2xe^x - 4$

1) $g'(x) = -2(x-1)e^x$

x	$-\infty$	0	1	α	$+\infty$
$g'(x)$	+	0	—	—	—
$g(x)$		0	$2e-4$		$-\infty$

$\forall x \in]-\infty; 0] \cup [\alpha; +\infty[\quad g(x) < 0$

$\forall x \in]0; \alpha[\quad g(x) > 0$

II 1) $h'(x) = e^x - 2$

$\forall x \in]-\infty, \ln 2[\quad h'(x) < 0$

$\forall x \in [\ln 2; +\infty[\quad h'(x) > 0$

$h(\ln 2) = 2 - 2\ln 2 > 0 \Rightarrow h(x) > 0$

$$2) f(u) = \frac{u(2 - \frac{3}{u})}{u(e^u - 2)}$$

$\lim_{u \rightarrow +\infty} f(u) = 0$ et $\lim_{u \rightarrow -\infty} f(u) = -1$

$$3) f'(u) = \frac{g(u)}{(e^u - 2u)^2}$$

u	$-\infty$	0	α	$+\infty$
$f'(u)$	—	0	+	0
$f(u)$	-1		$f(\alpha)$	0

α is marked on the graph as the intersection point of the curve and the x-axis.

$$6) f'(\alpha) = 0 \Rightarrow x = 1.$$

$$\Rightarrow f(u) = -1 \Rightarrow u = \ln 2.$$

$\forall u \in]-\infty; \ln 2[\quad f(u) - y < 0$

$\forall u \in]\ln 2; +\infty[\quad f(u) - y > 0$

Exercice n° 83

$$1) \lim_{u \rightarrow 0} \frac{f(u)}{u} = \lim_{u \rightarrow 0} \frac{u(\ln u - 1)}{2} = 0 \text{ alors } f \text{ est dérivable en } 0$$

$$2) \lim_{u \rightarrow +\infty} f(u) = +\infty; \quad f(u) = u(\ln u - 1)$$

u	0	e	+	$+\infty$
$f'(u)$	—	0	+	
$f(u)$	0		$1 - \frac{e^2}{4}$	$+\infty$

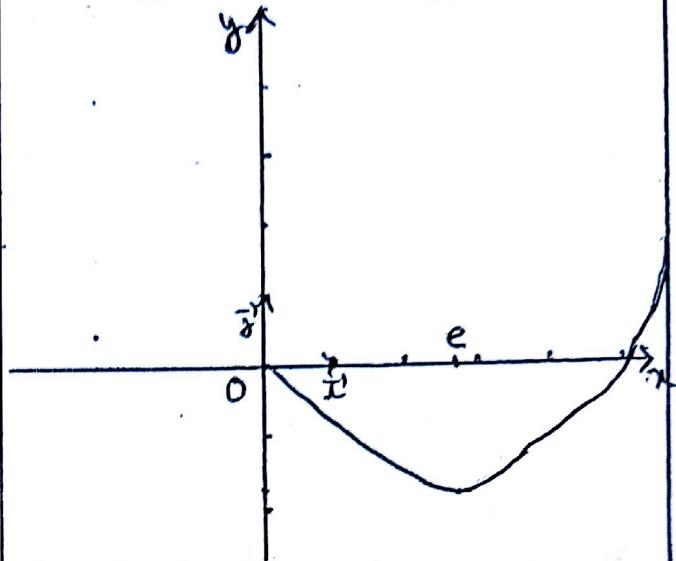
$$4) f'(1) = -1 \text{ et } f(1) = -\frac{3}{4} \text{ f(1): } y = -x + \frac{1}{4}$$

$$6) I(\lambda) = \int_{\lambda}^e \frac{u^2}{2} (\ln u - \frac{3}{2}) du \text{ cm}^2$$

$$U' = \frac{u^2}{2} \quad U = \frac{1}{6} u^3; \quad V = \ln u - \frac{3}{2} \quad V' = \frac{1}{u}$$

$$I(\lambda) = \left[\frac{1}{6} u^3 (\ln u - \frac{3}{2}) \right]_{\lambda}^e - \int_{\lambda}^e \frac{1}{6} u^2 du \text{ cm}^2$$

$$I(\lambda) = \left[\frac{1}{6} u^3 (\ln u - \frac{3}{2}) - \frac{1}{18} u^3 \right]_{\lambda}^e \text{ cm}^2.$$

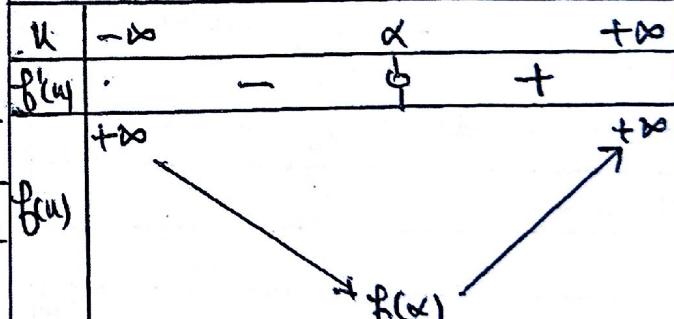


Exercice n° 84.

A/ 2) $\forall u \in \mathbb{R}, g'(u) = (u-2)^2 e^{-u} \geq 0$ alors g est croissante sur \mathbb{R} .

$$g(2) = 1 - 2e^2. \quad 4) \quad \forall u \in]-\infty; \alpha] \quad g(u) \leq 0$$

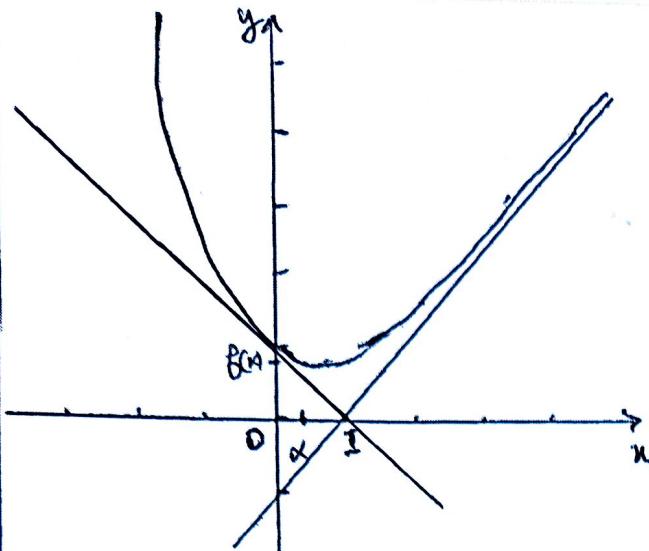
$$B/ 2) \quad \forall u \in \mathbb{R}, \quad f'(u) = g(u)$$



$$4) b) 0,83 < f(\alpha) < 0,87$$

5) $\lim_{u \rightarrow +\infty} f(u) - (u-1) = 0$; on en déduit que la droite d'équation $y = u-1$ est une asymptote oblique à la courbe (f) en $+\infty$. et $\forall u \in \mathbb{R}, f(u) - y > 0$ la courbe (f) est au dessus de la droite (D).

$$6) (T): \quad y = -x + 1.$$



8) a) Après avoir dérivée. $P(x)$ et comparée à $(x^2+1)e^x$ on a: $a=1$, $b=2$ et $c=-4$.

$$\begin{aligned} b) A(x) &= \int_x^0 [f(u) - (u-1)] du \cdot ua. \\ &= \left[4(x^2 - 2x + 4) e^{-x} - 16 \right] \cdot ua. \end{aligned}$$

$$\begin{aligned} c) g(x) &= 0 \Rightarrow x^2 + 2 = e^x + 2x \\ A(x) &= (4e^{2x} + 8e^x - 16) \text{ cm}^2. \end{aligned}$$

C/1) f est croissante sur \mathbb{R} donc croissante sur $[1; 2]$
 $1 \leq x \leq 2 \Rightarrow f(1) \leq f(x) \leq f(2)$ d'où

$$1 \leq f(x) \leq 2$$

2) $\forall x \in \mathbb{R}$, $f'(x) = g(x)$ et g est croissante sur \mathbb{R} , donc $1 \leq x \leq 2$
 $f'(1) \leq f'(x) \leq f'(2) \Rightarrow 0 \leq f'(x) \leq \frac{3}{4}$

4) a) $U_0 = 1 \Rightarrow 1 \leq U_0 \leq 2$. Supposons que $1 \leq U_n \leq 2$ et montrons que

$$1 \leq U_{n+1} \leq 2.$$

$$1 \leq U_n \leq 2 \Rightarrow f(1) \leq f(U_n) \leq f(2)$$

$$\Rightarrow 1 \leq U_{n+1} \leq 2 \text{ d'où } \forall n \in \mathbb{N}, 1 \leq U_n \leq 2.$$

b) $\forall n \in [1; 2]$, $0 \leq f(u) \leq \frac{3}{4}$ et \forall

$U_n \in [1; 2]$, $\beta \in [1; 2]$. En utilisant T.I.A-F à fronte β et U_n on a:

$$|f(U_n) - f(\beta)| \leq \frac{3}{4} |U_n - \beta|. \text{ d'où}$$

$$\forall n \in \mathbb{N}, |U_{n+1} - \beta| \leq \frac{3}{4} |U_n - \beta|.$$

$$|U_1 - \beta| \leq \frac{3}{4} |U_0 - \beta|$$

$$|U_2 - \beta| \leq \frac{3}{4} |U_1 - \beta|$$

$$|U_n - \beta| \leq \frac{3}{4} |U_{n-1} - \beta|$$

$$\frac{|U_n - \beta|}{|U_0 - \beta|} \leq \left(\frac{3}{4}\right)^n |U_0 - \beta|. \text{ or } -1 \leq U_0 - \beta \leq$$

$$|U_0 - \beta| \leq 1$$

$$\Rightarrow |U_n - \beta| \leq \left(\frac{3}{4}\right)^n.$$

$$e) n_0 = 17.$$

Exercice n° 86

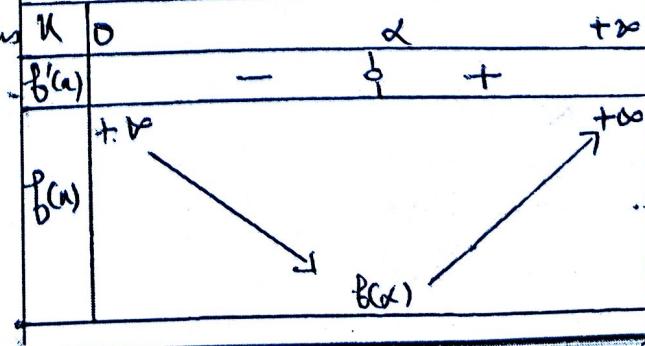
$$A/2) \forall n \in]0; +\infty[, g'(n) = \frac{2(x^2 - 2x + 2)}{n^3}$$

$\forall n \in]0; +\infty[$ $g'(n) > 0$ alors g est strictement croissante sur $]0; +\infty[$.

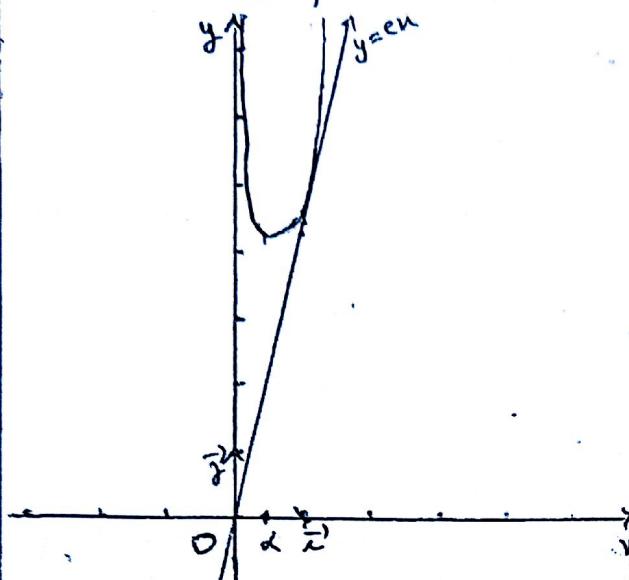
4) $g(x) = 0 \Rightarrow \forall n \in]0; +\infty[g(n) \leq 0$ et $\forall n \in [\alpha; +\infty[g(n) > 0$.

B/1) a) $\lim_{n \rightarrow +\infty} \frac{f(x)}{n} = +\infty$, on en déduit une branche parabolique de direction (0) .

$$2) a) \forall n \in]0; +\infty[, f'(n) = e^n g(n)$$



b) $g(d) = 0 \Rightarrow \ln(\alpha^2) = -\frac{4}{\alpha} + \frac{2}{\alpha^2}$
 $f(x) = e^x \left(\frac{2-2x}{\alpha^2} \right) \Rightarrow f(x) \approx 4,33.$



Corrigés

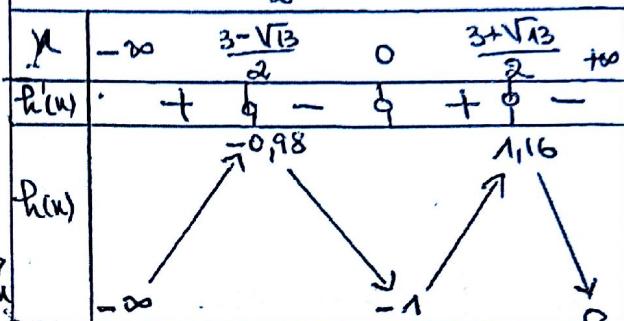
alors $g(x) = 0$ admet une solution x_0 . $g(\frac{5}{4}) \times g(\frac{4}{3}) < 0 \Rightarrow \frac{5}{4} < x_0 < \frac{4}{3}$.

B/1) $\lim_{x \rightarrow -\infty} h(x) = -\infty$ et

$$\lim_{x \rightarrow +\infty} h(x) = \lim_{x \rightarrow +\infty} \frac{x^3}{e^x} \left(1 - \frac{1}{x^2} - \frac{1}{x^3} \right) = 0$$

$$h'(x) = x \left(-x^2 + 3x + 1 \right) e^{-x}$$

$$x = 0 \text{ ou } x = \frac{3 - \sqrt{13}}{2} \text{ ou } x = \frac{3 + \sqrt{13}}{2}$$



C/1) $h'(x) = f(x)$ donc h est une primitive de f sur $[0; +\infty]$ donc

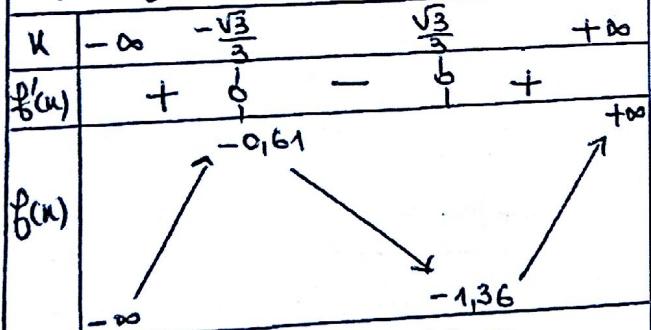
$$F(x) = h(x) + C.$$

$$F(2) = 0 \Rightarrow C = -e^2 \ln 4 \approx f(2) = h(2) - e^2$$

2) $h(x) = e^x \Rightarrow P_1(E; e^{\sqrt{c}}); P_2(-\sqrt{c}; e^{\sqrt{c}})$

Exercice n° 87

A/1) $f'(x) = 3x^2 - 1$



2) a) Dans l'intervalle I , g est continue et croissante donc elle réalise une bijection de I sur J tel que $J = g(I) = \left[\frac{-9-2\sqrt{3}}{9}; +\infty \right]$.

b) $g(\frac{\sqrt{3}}{3}) < 0$ et $\lim_{x \rightarrow +\infty} g(x) = +\infty$

2) $\lim_{x \rightarrow -\infty} \frac{h(x)}{x} = -\infty$

Exercice n° 88

$$a) f(x) = \ln x - \frac{\ln x}{x^2}$$

$\ln x$ est continue et dérivable sur $[0; +\infty[$

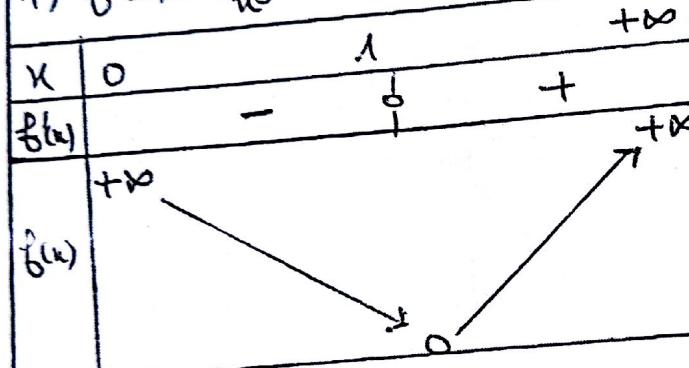
$\frac{\ln x}{x^2}$ est continue et dérivable sur $[0; +\infty[$

alors f est continue et dérivable sur $[0; +\infty[$

$$et f'(x) = \frac{x^2 - 1 + 2\ln x}{x^3}$$

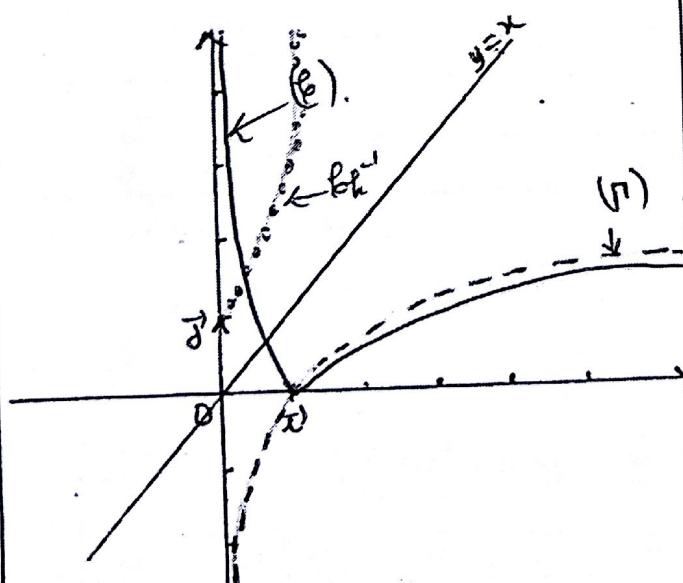
3) $g'(u) = 2u + \frac{2}{3} > 0$ alors g est strictement croissante sur $[0; +\infty[$
 $g(1) = 0$ alors $\forall u \in [0; 1] g(u) \leq 0$ et $\forall u \in [1; +\infty[g(u) \geq 0$.

$$4) f'(u) = \frac{g(u)}{u^3}$$

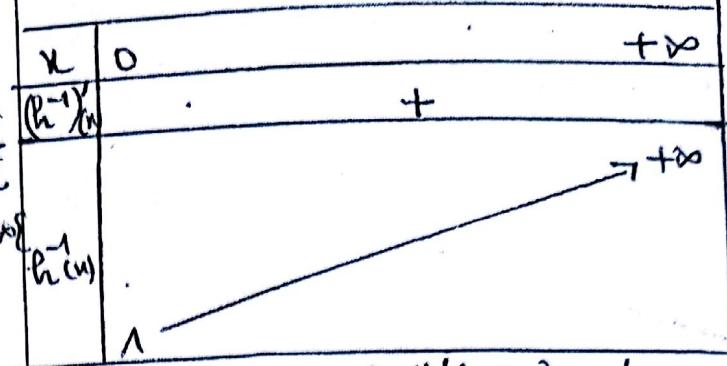


$$5) a) f(u) - \ln x = -\frac{\ln x}{x^2}$$

sur $[0; 1[$ (f) est au dessus de (Γ)
 sur $[1; +\infty[$ (Γ) est au dessus de (f) .



$$6) a) f(x) = f(u) \text{ sur } [1; +\infty[$$



$$c) h(e) = 1 - \frac{1}{e^2} \Rightarrow (h^{-1})'\left(1 - \frac{1}{e^2}\right) = \frac{1}{h'(e)}$$

$$\text{d'où } (h^{-1})'\left(1 - \frac{1}{e^2}\right) = \frac{e^3}{e^2 + 1}$$

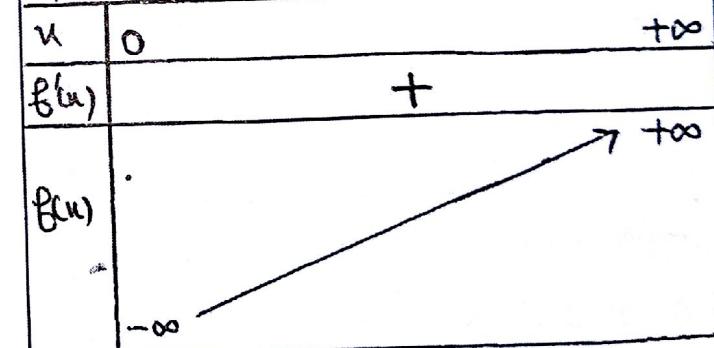
Exercice n° 89

$$1) g(u) = \frac{e(u^2 - 1)}{u}$$

$\forall u \in [0; 1] g'(u) < 0$ et $\forall u \in [1; +\infty[$
 $g'(u) > 0$ $g(1) = 3$ alors $\forall u \in [1; +\infty[$
 $g(u) > 0$

2) a) $\lim_{u \rightarrow 0^+} f(u) = -\infty$ et $\lim_{u \rightarrow +\infty} f(u) = +\infty$

d)



$$b) f(x) - y = \frac{2\ln x}{x}$$

$\forall u \in [0; 1] f(u) - y \leq 0$

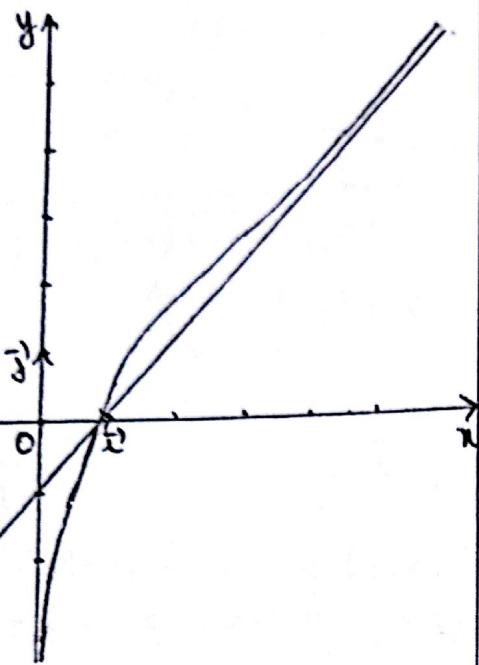
$\forall u \in [1; +\infty[f(u) - y \geq 0$

$$g) f(x) = y \Rightarrow x = 1.$$

$$(T): y = f'(1)(x-1) + f(1) = 3x - 3$$

$$3) a) f'(u) = 2 \times \frac{1}{u} \times \ln u$$

b) $A(x) = \int_1^x [e(u)-y] du \times u \cdot a$
 $A(x) = [(e(u)-y)]_1^x \cdot ua = e^x \cdot x - x^2 \cdot a$

Exercice n° 90

1) $Dg = \mathbb{R}^* =]-\infty; 0] \cup]0; +\infty[$.

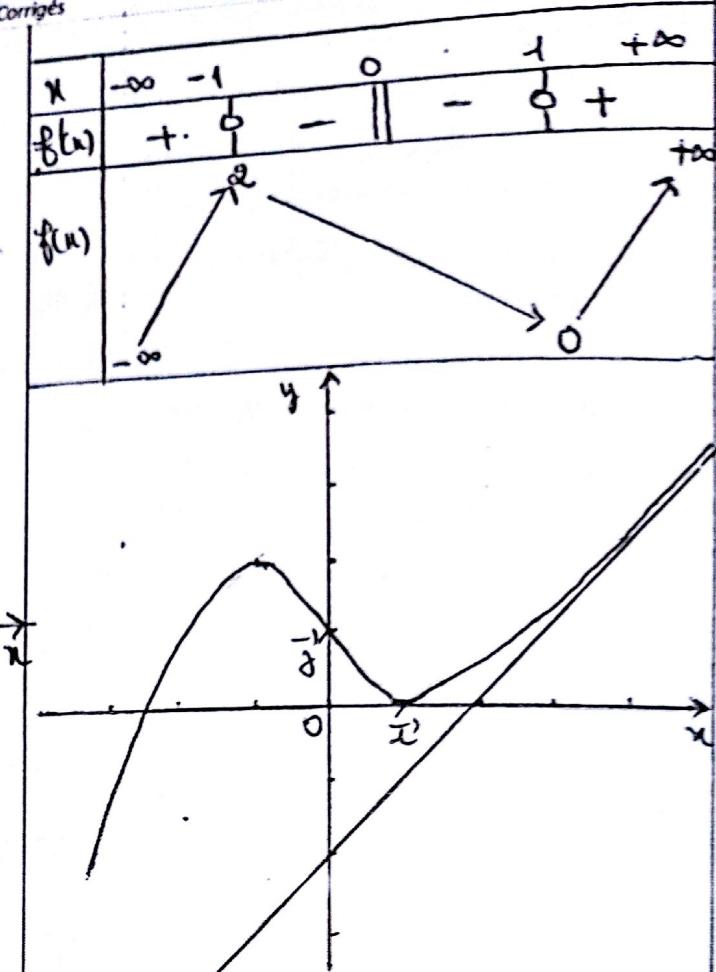
2) $\lim_{u \rightarrow 1^-} g(u) = g(1) = 0$ donc g est continue en 1.

3) $\lim_{u \rightarrow 0^+} g(u) = 1$ et on déduit que g est le prolongement par continuité en 0. Soit h son prolongement par continuité en 0. $\{h(u) = g(u) \ \forall u \in \mathbb{R}^*$
 $h(0) = 1$.

B/ 1) $\forall u \in]-\infty; 0[\cup]0; 1[$ $f'(u) = \ln u$

2) $\forall u \in [1; +\infty[$ $f'(u) = 1 - e^{1-u}$

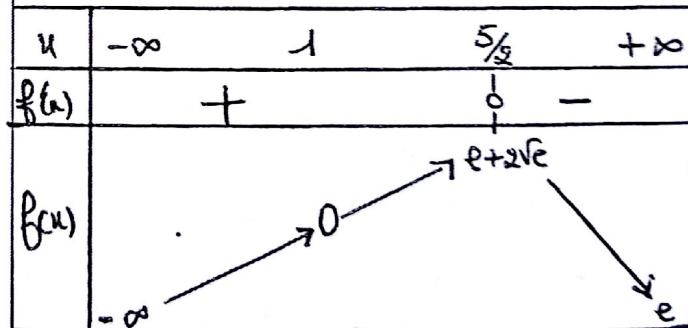
a) $\lim_{u \rightarrow +\infty} f(u) - u + 2 = 0$ alors (D) est une asymptote oblique à (f) en $+\infty$ et $f(x) - y > 0$ par conséquent la courbe (f) est au dessus de la droite (D) sur $[1; +\infty[$.



C/ 2) a) $A(x) = \int_1^x [f(u) - (u-2)] du \cdot u \cdot a$
 $A(x) = 3(1 - e^{1-x}) \text{ cm}^2$

Exercice n° 91

I/ 1) $\forall x \in \mathbb{R}$, $f'(x) = (5-2x)e^{-x+2}$



II/ 1) $\lim_{x \rightarrow -\infty} g(x) = \lim_{x \rightarrow -\infty} x \left[e \left(1 - \frac{2}{x} \right) + \frac{3}{x} \left(2 - \frac{1}{x} \right)^2 \right]$

$\lim_{x \rightarrow -\infty} g(x) = +\infty$; 2) $\forall x \in \mathbb{R}$, $g'(x) = f(x)$

$\forall x \in]-\infty; 1]$ $g'(x) \leq 0$ et $\forall x \in [1; +\infty[$ $g'(x) \geq 0$ et $g(1) = 3-2e$

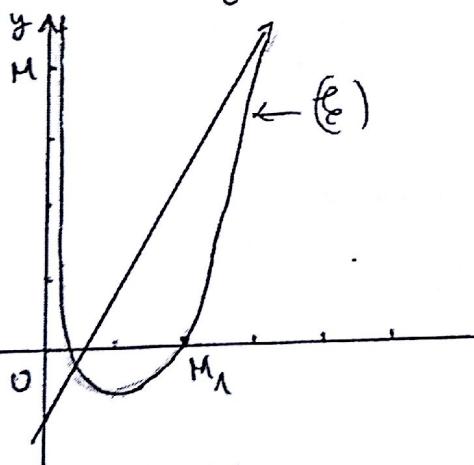
3) g est continue, dérivable et décroissante dans $]-\infty; 1]$. donc $\forall u \in [0; \frac{1}{2}], g(0) \times g(0,5) < 0$. On constate alors que $g(x)$ prend des valeurs positives et négatives dans $[0, \frac{1}{2}]$. D'après la propriété des valeurs intermédiaires, l'équation $g(x) = 0$ admet sur $[0, \frac{1}{2}]$ une solution unique.

4) $f(x) - y = (1-2x)e^{-x+2}$.

$\forall x \in]-\infty; \frac{1}{2}[, (f)$ est au dessus de (D) et $\forall x \in]\frac{1}{2}; +\infty[, (f)$ est en dessous de (D).

5) a) (I): $y = (1+e)x - 2(e+1)$

c) $g''(x) = f'(x) = 0 \Rightarrow x = \frac{5}{2}$ donc g s'annule en de signe. $I(\frac{5}{2}; g(\frac{5}{2}))$ est un point d'inflexion.



7) $\overrightarrow{OH} \left\{ \begin{array}{l} x = 2 - t \\ y = 3(1-t) + (2t-1)t \end{array} \right.$

$t = e^{-x} \Rightarrow y = e(x-2) + 3 - (2x-1)e^{-x+2}$

$x \in [0; 2]$, la trajectoire de M est l'arc $M_0 M_1$ de la courbe (f) avec $M_0(0; 4; 5)$ et $M_1(2; 0)$

Exercice n° 9.2

A/1) a) $\lim_{x \rightarrow -\infty} f(x) = -2$

b) $f(x) = x e^{2x} \left[1 - \frac{1}{2x} - \frac{4}{e^x} + \frac{4}{xe^x} - \frac{2}{x^2 e^x} \right]$
 $\lim_{x \rightarrow +\infty} f(x) = +\infty$.

2) $f'(x) = \left[e^{2x} + 2e^{2x}(x - \frac{1}{2}) \right] - 4 \left[e^x + (x-1)e^x \right]$
 $f'(x) = 2xe^x(e^x - 2)$.

x	$-\infty$	0	$\ln 2$	$+\infty$
$f'(x)$	+	0	-	0
$f(x)$	$\nearrow \frac{3}{2}$	\searrow	$\nearrow 1,23$	$\nearrow +\infty$

3) a) $\lim_{n \rightarrow -\infty} \frac{f(n)}{n} = \lim_{n \rightarrow -\infty} \left(1 - \frac{1}{2n} \right) e^{2n} - 4 \left(1 - \frac{1}{n} \right) e^{-\frac{2}{n}}$

$\lim_{n \rightarrow -\infty} \frac{f(n)}{n} = 0$ alors (f) admet une branche parabolique de direction (I) en $-\infty$.

$\lim_{n \rightarrow +\infty} \frac{f(n)}{n} = +\infty$ alors (f) admet une branche parabolique de direction (OJ).

4) $F'(x) = f(x)$

B/1) $f(bx) = (bx - \frac{1}{2})x^2 - 4(bx - 1)x - 2$

$f(x) = (x^2 - 4x) \ln x - \frac{1}{2}(x^2 - 8x + 4) f'(x)$

2) $\lim_{x \rightarrow 0} g(x) = -2$ alors g est continue

$\lim_{x \rightarrow 0} \frac{g(x) - g(0)}{x} = \lim_{x \rightarrow 0} (x-4) \ln x - \frac{1}{2}x + 4x = +\infty$

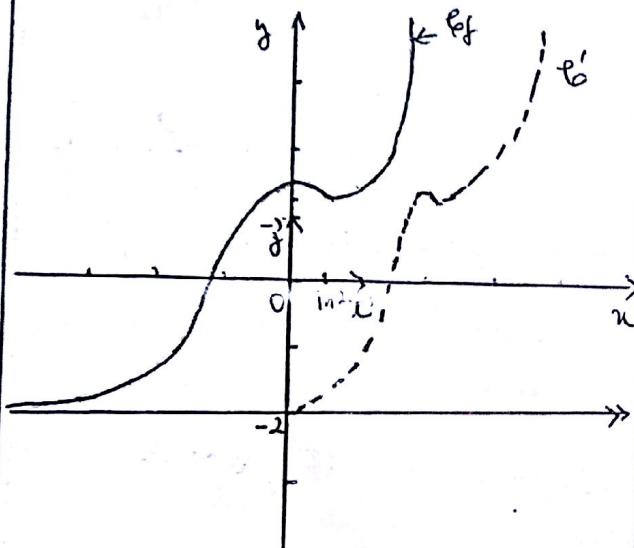
alors g n'est pas dérivable mais elle admet une demi-tangente verticale.

4) $g'(x) = 2(x-2) \ln x$

$g'(x) = 0 \Rightarrow x = 2$ ou $x = 1$.

x	0	1	2	$+\infty$
$g'(x)$	+	0	-	0
$g(x)$	-2	$\frac{3}{2}$	$g(2)$	$+\infty$

5) $\lim_{x \rightarrow +\infty} \frac{g(x)}{x} = +\infty$ alors g admet branche parabolique de direction (0J).



Exercice n° 93

A/1) a) $D_f = \mathbb{R}$, $f(-x) = f(x)$ donc f est paire.

b) $f'_d(0) = f'_g(0) = 0$ donc f est dérivable en 0 et $f'(0) = 0$

2) $\forall x \in]0; +\infty[$, $f'(x) = \frac{2}{x} + 2x > 0$

3) a) $h'(x) = \frac{xh(x)}{(x^2+1)^2}$

$\forall x \in]0; +\infty[$, $h'(x)$ dépend du signe de $h(x)$.

$\forall x \in]0; \alpha[$, $h'(x) < 0$

$\forall x \in]\alpha; +\infty[$, $h'(x) > 0$

x	0	α	$+\infty$
$h(x)$	$+\infty$	-	+
$h'(x)$			$+\infty$

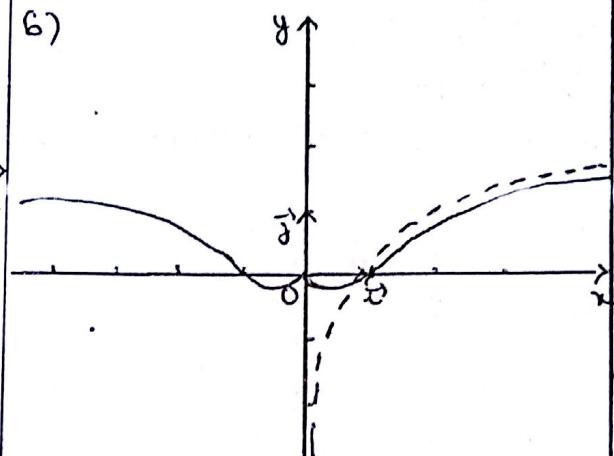
4) $\forall x \in]0; +\infty[$, $\ln x = -\frac{1}{2}(x^2+1)$
 $\Rightarrow h(x) = -\frac{1}{2}x^2$.

5) $h(x) - \ln x = -\frac{\ln x}{x^2+1}$

$\forall x \in]0; 1[$, $h(x) - \ln x > 0$

$\forall x \in]1; +\infty[$, $h(x) - \ln x < 0$

6)



B/1) $\forall x > 1 \Rightarrow \frac{1}{2x^2} \leq \frac{1}{x^2+1} \leq \frac{1}{x^2}$

$\forall x > 1 \Rightarrow \ln x > 0 \Rightarrow \frac{\ln x}{2x^2} \leq \frac{\ln x}{x^2+1} \leq \frac{\ln x}{x^2}$

2) $I = \int_1^3 \frac{\ln x}{x^2} dx = \left[-\frac{1-\ln x}{x} \right]_1^3 = \frac{2-\ln 3}{3}$

3) a) $\int_1^3 \frac{\ln x}{2x^2} dx \leq J \leq \int_1^3 \frac{\ln x}{x^2} dx$

$$\frac{1}{2} I \leq J \leq I$$

b) $A = 4J$.

Exercice n° 96

A/1) $\forall x \geq 0 \Rightarrow g'(x) = 1 - e^x$ alors

g est décroissante sur $[0; +\infty[$.

$$\lim_{n \rightarrow +\infty} g(n) = \lim_{n \rightarrow +\infty} n \left(1 + \frac{2}{n} - \frac{e^n}{n}\right) = -\infty$$

2) c) $\forall n \in [0; +\infty[g(n) > 0$
 $\forall n \in [0; +\infty[g(n) \leq 0$

B/ 1) a) $\forall n > 0, f'(n) = \frac{e^n g(n)}{(n e^n + 1)^2}$
b) $\forall n \in [0; +\infty[f'(n) > 0$ alors f est
 donc croissante sur $[0; +\infty[$ et $\forall n \in [0; +\infty[f'(n) < 0$ f est décroissante
 sur $[0; +\infty[$.

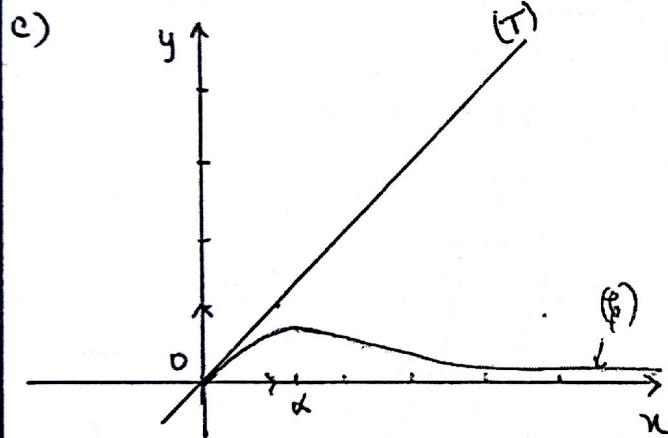
2) b) $f(n) = \frac{e^n (1 - e^{-n})}{e^n (n + e^{-n})} = \lim_{n \rightarrow +\infty} f(n) = 0$

3) b) $0,46 < f(x) < 0,47$

4) f) $y = x$

5) b) $\forall x \in [0; +\infty[U'(x) = -x e^{-x} < 0$

Alors U est décroissante sur $[0; +\infty[$
 et $\forall x \in [0; +\infty[U(x) \leq 0$



C/ 1) $F(x) = \ln(x + e^{-x})$ et $x > 0$

2) $A = \int_0^1 (x - f(x)) dx = \left[\frac{1}{2} x^2 - \ln(x - e^{-x}) \right]_0^1$

$$A = [6 - 4 \ln(1 + e)] \text{ cm}^2$$

3) $V_n = \int_n^{n+1} f(x) dx$:

a) $V_0 = \ln(1 + e)$; $V_1 = \ln\left(\frac{2e^2 + 1}{e^2 + e}\right)$

corrigés

$$V_2 = \ln\left(\frac{3e^3 + 1}{2e^3 + 1}\right)$$

b) f est décroissante sur $[x_1; +\infty[$
 avec $\alpha < 1,15$ donc f est décroissante sur $[n; n+2]$ $\forall n > 2$.

$$n \leq x \leq n+1 \Rightarrow f(n+1) \leq f(x) \leq f(n)$$

$$\int_n^{n+1} f(x+1) dx \leq \int_n^{n+1} f(x) dx \leq \int_n^{n+1} f(x) dx$$

$$f(n+1)(n+1 - n) \leq \int_n^{n+1} f(x) dx \leq f(n)(n+1 - n)$$

$$\forall n \geq 2; f(n+1) \leq \int_n^{n+1} f(x) dx \leq f(n).$$

c) $f(n+1) \geq V_n \leq f(n)$

$$f(n+2) \leq V_{n+1} \leq f(n+1) \Rightarrow V_{n+1} \leq V_n$$

d'où (V_n) est décroissante

d) $\lim_{n \rightarrow +\infty} f(n+1) = \lim_{n \rightarrow +\infty} f(n) = 0$ alors

$$\lim_{n \rightarrow +\infty} V_n = 0$$

e) $S_n = V_0 + V_1 + \dots + V_n = \int_0^n f(x) dx$.

Exercice n° 97

A/ a) $Df = \mathbb{R} \setminus \{0\}$.

3) $\lim_{x \rightarrow 0^-} f(x) = -\infty$ et $\lim_{x \rightarrow +\infty} f(x) = +\infty$

4) b) $f(x) - y = \frac{e^x}{e^x - 1}$; $\forall x \in]-\infty; 0[$ $f(x) - y < 0$
 $\forall x \in]0; +\infty[f(x) - y > 0$

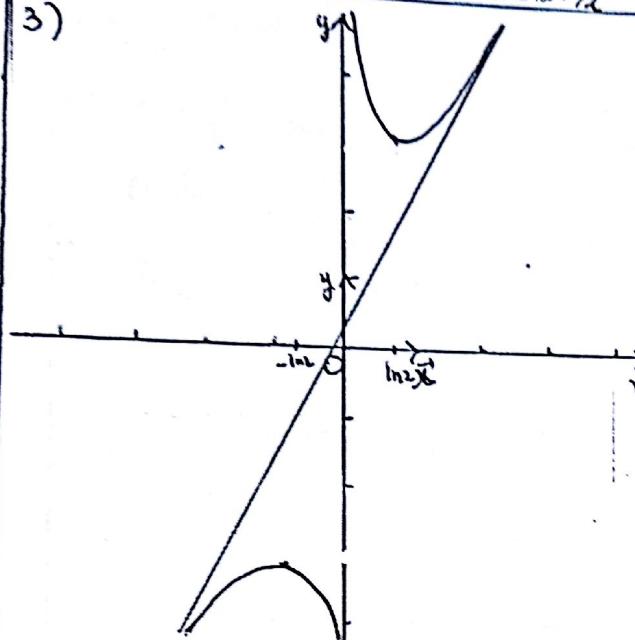
c) la courbe (f) possède deux autres asymptotes dont l'une est verticale ($x=0$) et l'autre oblique ($y = 2x + \frac{1}{x}$)

B/ 1) $S =]-\infty; \ln 2[\cup]\ln 2; +\infty[$

2) $\forall x \in Df, f'(x) = \frac{2e^{2x} - 5e^x + 2}{(e^x - 1)^2}$

u	$-\infty$	$-\ln 2$	0	$-\ln 2 + \infty$
$f'(u)$	+	0		0 +
$f(u)$	$-\infty$	$-(2\ln 2 + \frac{3}{2})$	$+\infty$	$2\ln 2 + \frac{3}{2}$

3)



4) pour $m = \frac{1}{2}$; $D_m = D_{1/2}$ est conforme à \mathbb{D} . Pour $m \in]\frac{1}{2}; +\infty[$ on a 1 point

C/1) b) $I_n = \int_{\ln n}^{\ln(n+1)} \frac{dx}{x^{m-1}} = \ln\left(\frac{n}{n+1}\right)$

2) $S_n = I_2 + I_3 + \dots + I_n = \int_{\ln 2}^{\ln(n+1)} \frac{e^t}{t^{m-1}} dt$

S_n est l'aire du domaine limité par la courbe (f) , la droite (D) d'équation $y = 2x - \frac{1}{2}$ et les droites d'équation $x = \ln 2$ et $x = \ln(n+1)$.

$$S_n = \ln n.$$

Exercice n° 99

$$A/1) 4e^{2x} - 5e^x + 1 = 4(e^x - 1)(e^x - \frac{1}{4})$$

$\forall x \in]-\infty; -2\ln 2[\cup]0; +\infty[4e^{2x} - 5e^x + 1 > 0$

$\forall x \in]-2\ln 2; 0[4e^{2x} - 5e^x + 1 < 0$

2) a) $D_g =]0; +\infty[$

Corrigés

$$\lim_{u \rightarrow +\infty} g(u) = \lim_{u \rightarrow +\infty} \sqrt{u} \left(\frac{\ln u}{\sqrt{u}} - 2 + \frac{2}{\sqrt{u}} \right) = +\infty$$

$$b) g'(u) = \frac{1 - \sqrt{u}}{u}$$

$\forall u \in]0; 1[g'(u) > 0$ et $\forall u \in]1; +\infty[g'(u) < 0$

$g'(0) < 0$

c) $g(0) = 0$ donc $\forall u \in]0; +\infty[g(u) > 0$

B/1) $D_f = \mathbb{R} \setminus \{-\ln 2\}$

$$\forall u \rightarrow +\infty \lim_{u \rightarrow +\infty} f(u) = +\infty$$

$$\lim_{u \rightarrow -\infty} f(u) = -\infty \text{ et } \lim_{u \rightarrow -\ln 2^+} f(u) = +\infty$$

les droites d'équations $y = x$ et $y = -x$ sont les asymptotes obliques respectivement en $-\infty$ et en $+\infty$

4) La fonction f est continue en 0 mais elle n'est pas dérivable en 0. Elle admet une demi-tangente

Verticale.

$$5) f'(u) = \begin{cases} \frac{4e^{2x} - 5e^x + 1}{(2e^x - 1)^2} & \text{si } x \leq 0 \\ \frac{\ln x - 2\sqrt{x} + 2}{2\sqrt{x}} & \text{si } x > 0 \end{cases}$$

u	$-\infty$	$-2\ln 2$	$-\ln 2$	0	$+\infty$
$f'(u)$	+	0	-	-	
$f(u)$	$\rightarrow -\infty$	$\rightarrow -1$	$\rightarrow +\infty$	$\rightarrow 1$	$\rightarrow -\infty$

Exercice n° 100

$$A/1) g'(u) = e^u - 1$$

$\forall u \in]-\infty; 0[g'(u) < 0$ et $\forall u \in]0; +\infty[$

$g'(u) > 0$; $g(0) = 0$ alors $g(u) > 0$

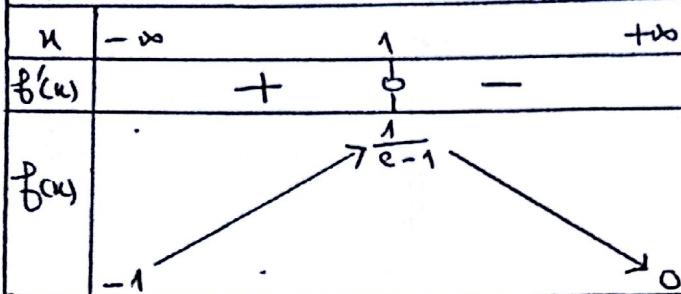
$$2) g(u) > 0 \Rightarrow e^u - u > 1 > 0$$

$$B/1) \lim_{u \rightarrow +\infty} f(u) = \lim_{u \rightarrow +\infty} \frac{1}{e^u - 1} = 0$$

$$\lim_{n \rightarrow -\infty} f(n) = \lim_{n \rightarrow -\infty} \frac{1}{\frac{1}{n} e^{-n} - 1} = -1$$

2) $f'(n) = (1-n) \times \frac{e^{-n}}{(e^{-n}-1)^2}$

3)



4) (T): $y = x$; $f(x) - y = -\frac{n(e^{-n}-1)}{e^{-n}-1}$

$\forall x \in]-\infty; 0[$ $f(x) - y > 0$ et $\forall x \in]0; +\infty[$ $f(x) - y < 0$

Exercice n° 104

1) $\lim_{n \rightarrow +\infty} f(n) = -\infty$ et $\lim_{n \rightarrow -\infty} f(n) = -\infty$

$$\lim_{n \rightarrow +\infty} \frac{f(n)}{n} = \lim_{n \rightarrow +\infty} \left(e^{-n} - \frac{1}{2} \right) = -\frac{1}{2}, \lim_{n \rightarrow +\infty} f(n) + \frac{1}{2} = 0$$

alors $y = -\frac{1}{2}x$;

$$\lim_{n \rightarrow -\infty} \frac{f(n)}{n} = \lim_{n \rightarrow -\infty} \left(e^{-n} - \frac{1}{2} \right) = +\infty$$

2) a) $f'(n) = (1-n) e^{-n} - \frac{1}{2} = \varphi(n)$

b) $\varphi'(n) = (x-2) e^{-n}$

$\forall n \in]-\infty; 2]$ $\varphi'(n) \leq 0$ et $\forall n \in [2; +\infty[$

$$\varphi'(n) \geq 0 \Rightarrow \lim_{n \rightarrow -\infty} \varphi(n) = +\infty, \varphi(2) < 0$$

donc $0 \in]-\infty; 2]$ alors il $\exists! \alpha \in]-\infty; 2]$ / $\varphi(\alpha) = 0$

3) a) $h(n) = 1 - \frac{1}{2} e^{-n} = n \Rightarrow (1-n) e^{-n} - \frac{1}{2} = 0$

donc l'unique solution $\varphi(n) = 0$ qui est α est aussi l'unique solution de $h(n) = n$.

b) h est continue, dérivable sur I comme somme de fonctions

continues dérivables sur I et $\forall n \in I$, $h'(n) = -\frac{1}{2} e^{-n}$ donc h

Corrigés

est strictement décroissante car pour tout n dans I on a $h(n) > 0$. h est une bijection de I vers $h(I)$ $h(I) \subset I$.

c) $\forall n \in I$, $h'(\frac{1}{2}) < h'(n) < h'(0)$ car $h'(n)$ est strictement décroissante

d'où $-0,83 < h'(n) < -0,5 \Rightarrow |h'(n)| \leq 0,83$

d) $|h(n) - \alpha| = |h(n) - h(\alpha)|$ car $h(n) = n$ d'après T.ZAF, $|h(n) - h(\alpha)| \leq 0,83 |n - \alpha|$

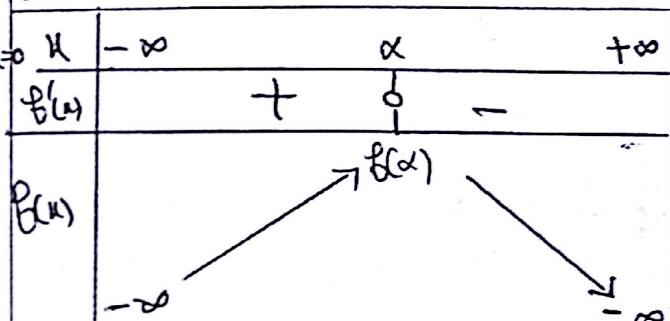
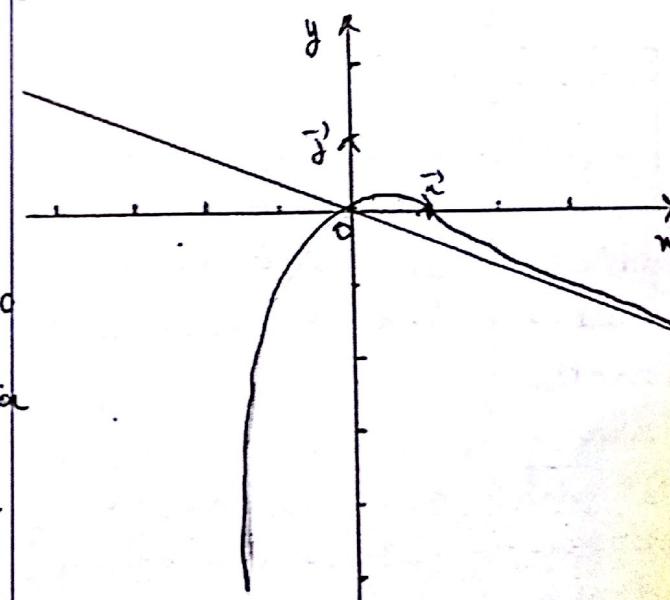
4) a) $\forall n \in \mathbb{N}$, $U_n \in I \Leftrightarrow |h(U_n) - \alpha| \leq 0,83 |U_n - \alpha|$
 $h(U_n) = U_{n+1} \Rightarrow |U_{n+1} - \alpha| \leq 0,83 |U_n - \alpha|$

on a: $|U_0 - \alpha| = |\alpha| \leq \frac{1}{2} (0,83)^0 \approx 1 \Rightarrow |\alpha| = \frac{1}{2}$

b) $\lim_{n \rightarrow +\infty} \frac{1}{2} (0,83)^n = 0 \Rightarrow \lim_{n \rightarrow +\infty} U_n = \alpha$

c) $\frac{1}{2} (0,83)^p \leq 10^{-2} \Rightarrow p \approx 21$.

5)



Exercice n° 102

A/1) $Dg = \mathbb{R} \setminus \{0\}$

$$\lim_{x \rightarrow -\infty} f(x) = +\infty, \lim_{x \rightarrow +\infty} f(x) = +\infty$$

$$\lim_{x \rightarrow 0^-} f(x) = +\infty, \lim_{x \rightarrow 0^+} f(x) = +\infty$$

2) $f(-u) = f(u)$, alors f est paire
et $Dg =]0; +\infty[$ ou $]-\infty; 0[$.

$$3) f(x) = \frac{2x^2 - 1}{x}$$

x	$-\infty$	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	$+\infty$
$f'(x)$	-	+	-	+	-
$f(x)$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$

$$f\left(-\frac{\sqrt{2}}{2}\right) = f\left(\frac{\sqrt{2}}{2}\right) > 0$$

B/1) $Dg = \mathbb{R} \setminus \{0\}$.

$$2) g'(x) = \frac{f(x)}{x^2}$$

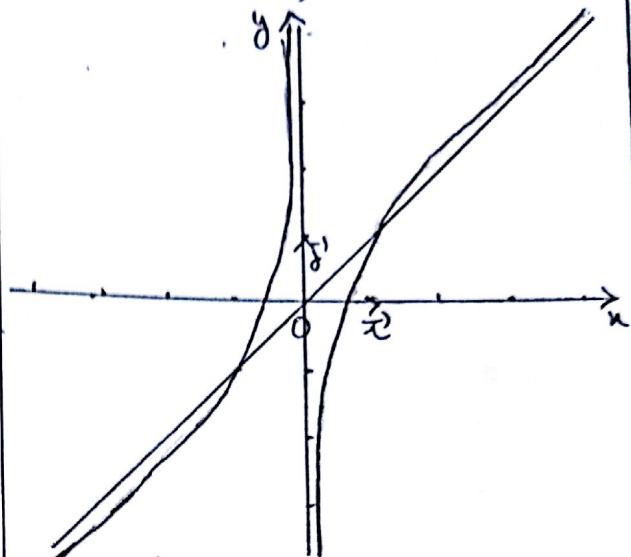
x	$-\infty$	0	$+\infty$
$g'(x)$	+		+
$g(x)$	$+\infty$	$-\infty$	$+\infty$

4) $g(x) = 0$; $\forall x \in]0; +\infty[$, g est continue, dérivable et strictement croissante. $\lim_{x \rightarrow 0^+} g(x) = -\infty$ et $\lim_{x \rightarrow +\infty} g(x) = +\infty$. alors g réalise une bijection de \mathbb{R}^* vers \mathbb{R} ; or $0 \in \mathbb{R}$, par conséquent $g(x) = 0$ admet une solution x . Comme g est impaire, $-x$ est solution de $g(x) = 0$.

$\forall x \in -\infty \in]-\infty, 0[$.

$$6) g(u) - u = \frac{\ln(u)}{u} \Rightarrow \ln(u) = 0 \Rightarrow \begin{cases} u = 1 \\ u = -1 \end{cases}$$

A (1) et A (-1) .



Exercice n° 103

$$A/1) \begin{cases} f\left(-\frac{1}{2}\right) = 0 \\ f(0) = 1 \\ f'(0) = 1 \end{cases} \Rightarrow \begin{cases} \left(-\frac{a}{2} + b\right) e^{-\frac{c}{2}} = 0 \\ b = 1 \\ a + bc = 1 \end{cases}$$

$$a = 2, b = 1 \text{ et } c = -1.$$

$$2) a) \lim_{u \rightarrow -\infty} f(u) = -\infty \text{ et } \lim_{u \rightarrow +\infty} f(u) = 0$$

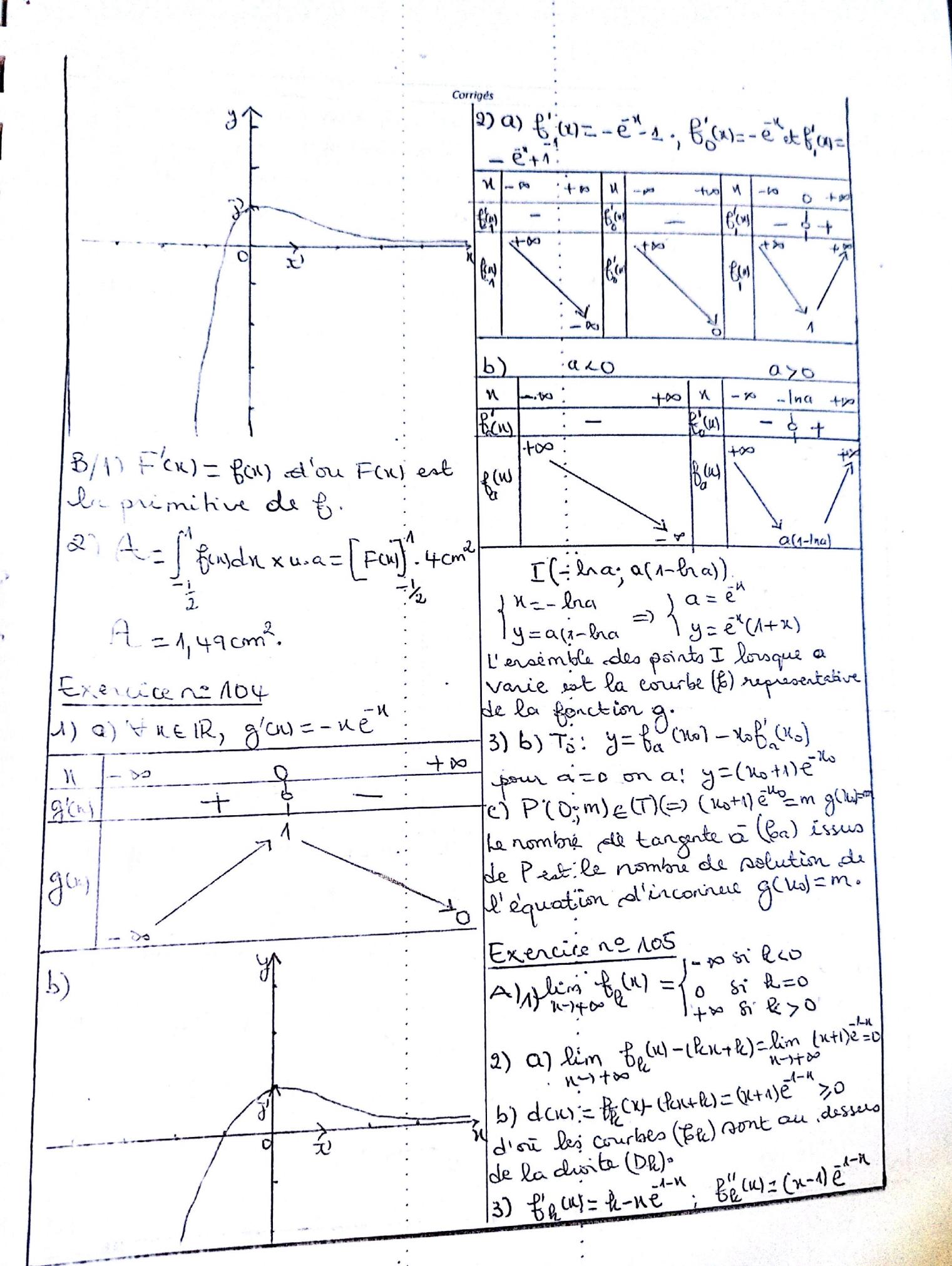
$$b) f'(x) = (-2x+1)e^{-x}$$

x	$-\infty$	$\frac{1}{2}$	$+\infty$
$f'(x)$	+	0	-
$f(x)$	$-\infty$	$f\left(\frac{1}{2}\right)$	0

$$4) 1,25 < x < 1,26$$

$$5) y = x + 1$$

$$6)$$



Exercice n° 105

1) $\lim_{n \rightarrow +\infty} f_{k_0}(n) = \begin{cases} -\infty & \text{si } k < 0 \\ 0 & \text{si } k = 0 \\ +\infty & \text{si } k > 0 \end{cases}$

2) a) $\lim_{n \rightarrow +\infty} f_{k_0}(n) - (k_0 n + k) = \lim_{n \rightarrow +\infty} (n+1)e^{-n} = 0$

b) $d(x) = f_{k_0}(x) - (k_0 x + k) = (x+1)e^{-x} \geq 0$
 d'où les courbes (f_{k_0}) sont au-dessus de la droite (D_k) .

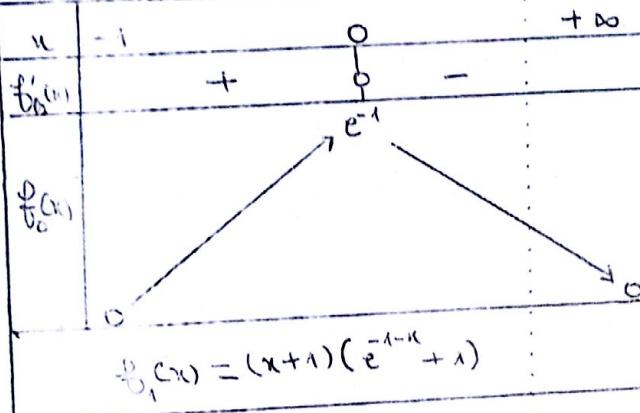
3) $f''_{k_0}(n) = k - n e^{-n}$; $f'''_{k_0}(n) = (n-1) e^{-n}$

Corrigés

b) $\forall n \in]-1; 1]$ f'_{α} est décroissante

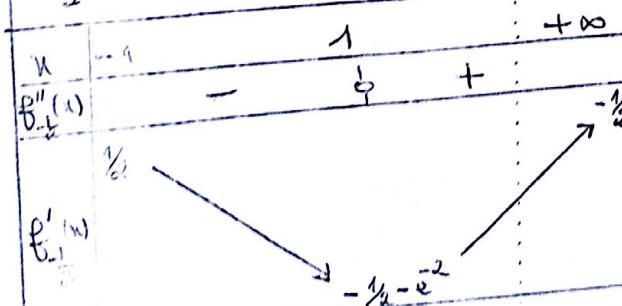
$\forall n \in [1; +\infty$ [f'_{α} est croissante

4) $f_{\alpha}(x) = (x+1) e^{-1-x}$



b) $(T_0): y = x+1$; $(T_1): y = 2(x+1)$

B/ 1) $f'_{-\frac{1}{2}}(x) = -\frac{1}{2} - x e^{-1-x}$; $f'_{-\frac{1}{2}}(1) = -\frac{1}{2} - e^{-2} < 0$
 $f'_{-\frac{1}{2}}(x) = 0 \Rightarrow x = 1$; $f'_{-\frac{1}{2}}(1) = -\frac{1}{2} - e^{-2} < 0$



Démontrer de $f'_{-\frac{1}{2}}(x) = 0$ admet une solution α dans $[-1; 1]$,

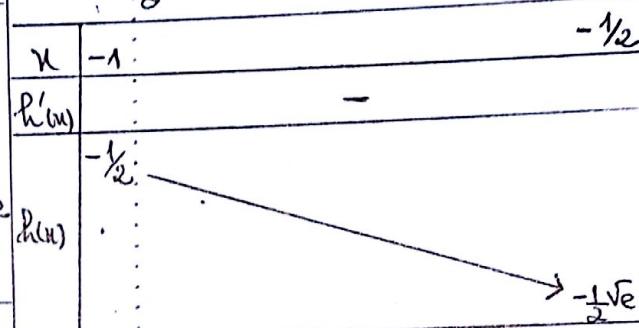
$h(x) = x \Rightarrow -\frac{1}{2} - x e^{-1-x} = 0 \Rightarrow f'_{-\frac{1}{2}}(x) = 0$
 $\forall x \in [-1; 1] \alpha$ est la unique solution de $f'_{-\frac{1}{2}}(x) = 0$

$-1 \leq \alpha \leq -\frac{1}{2}$ d'où α est l'unique solution $h(x) = x$.

3) $h(x) = -\frac{1}{2} e^{1+x}$ $Dh = [-1; -\frac{1}{2}]$

$h(-1) = -\frac{1}{2}$ et $h(-\frac{1}{2}) = -\frac{1}{2} \sqrt{e}$

$h'(x) = -\frac{1}{2} e^{1+x} < 0$



$-\frac{1}{2} \sqrt{e} < h(x) < -\frac{1}{2}$; on peut conclure que $h(x) \in I$.

4) a) $U_0 = -1 \in I$; supposons que $\forall n \in \mathbb{N}$, $U_n \in I$, et montrons que $U_{n+1} \in I$.

On sait que $\forall n \in I$, $h(x) \in I$ donc $U_n \in I \Leftrightarrow h(U_n) \in I \Leftrightarrow U_{n+1} \in I$.

b) $|U_1 - \alpha| \leq 0,83|U_0 - \alpha|$

$|U_2 - \alpha| \leq 0,83|U_1 - \alpha|$

$|U_n - \alpha| \leq 0,83|U_{n-1} - \alpha|$

$|U_n - \alpha| \leq 0,83^n|U_0 - \alpha|$; $|U_0 - \alpha| \leq \frac{1}{2}$

$|U_n - \alpha| \leq 0,83^n \times \frac{1}{2}$.

$\lim_{n \rightarrow +\infty} U_n - \alpha = 0 \Rightarrow \lim_{n \rightarrow +\infty} U_n = \alpha$.

c) $0,83 \times \frac{1}{2} < 10^{-2} \Rightarrow P > \frac{\ln(0,02)}{\ln(0,83)} \approx 2099$

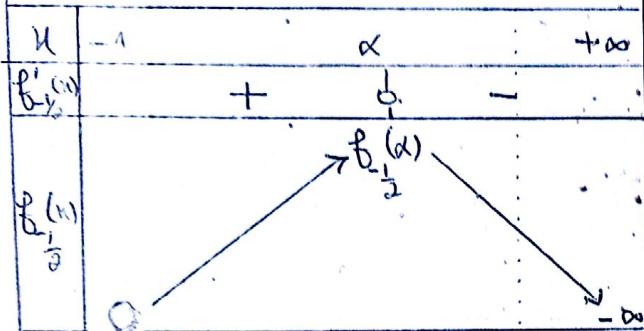
$P \approx 21$.

d) $f'_{-\frac{1}{2}}(x) = (x+1)(e^{-1-x} - \frac{1}{2})$

$\forall n \in \mathbb{N}$; α $\left[f'_{-\frac{1}{2}}(n) > 0 \right]$

$\forall n \in \mathbb{N}$; α $\left[f'_{-\frac{1}{2}}(n) < 0 \right]$

Corrigés



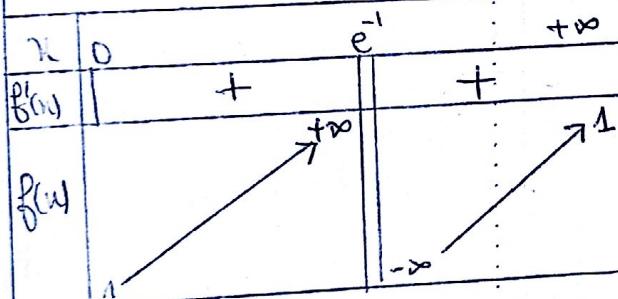
$$\begin{aligned} f_{\frac{1}{2}}(x) &= (x+1)(e^{-1-x} - \frac{1}{2}) \Rightarrow f(x) = x \\ &\Rightarrow e^{-1-x} = -\frac{1}{2x} \end{aligned}$$

$$f_{\frac{1}{2}}(x) = -\frac{1}{2x}(x+1)^2$$

Exercice n° 107

I/ a) $D_f = [0; \frac{1}{e}[\cup]\frac{1}{e}; +\infty[$

3) $\forall x \in D_f \setminus \{0\}; f'(x) = \frac{1}{x(1+\ln x)^2} > 0$



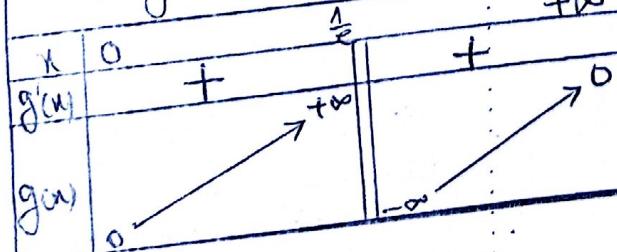
4) a) $f(x) = 0 \Rightarrow x = 1 \wedge (1; 0)$

(T): a) $y = x-1$; b) $f''(x) = \frac{-3-2\ln x}{x^2(1+\ln x)^3}$

$$x = e^{-3} \Rightarrow I(e^{-3}; \frac{3}{2})$$

II a) $f(x) - g(x) = 1 = \text{cste}$

b) $g(x) = f(x) - 1 \Rightarrow g'(x) = f'(x)$



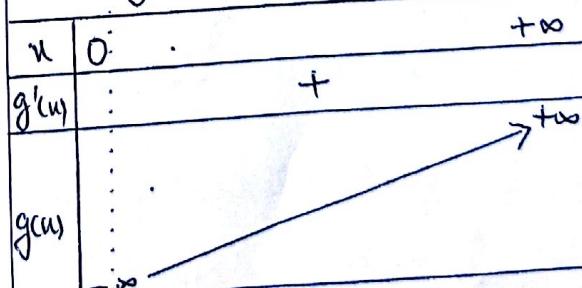
a) $\vec{MM'} = (x-n)\vec{i} + \left(\frac{-1}{1+\ln x} - \frac{\ln x}{1+\ln x}\right)\vec{j}$
 $\vec{MM'} = -\vec{j} = \text{cste.}$

b) La relation $\vec{MM'}$ veut dire que le point M' se déduit de M par la translation de vecteur $-\vec{j}$. Donc (f') se déduit de (f) par la translation de vecteur $-\vec{j}$.



Exercice n° 109

A/ $g'(x) = e^x + \frac{2}{x} > 0$



$\forall x \in]0; \alpha[g(x) < 0$

$\forall x \in]\alpha; +\infty[g(x) > 0$

B/ a) $\lim_{n \rightarrow +\infty} f(x) = \lim_{n \rightarrow +\infty} x \left(\frac{e^n}{n} + 2\ln x - 2 \right) = +\infty$

b) $\lim_{n \rightarrow +\infty} \frac{f(n)}{n} = \lim_{n \rightarrow +\infty} \frac{e^n}{n} + 2\ln n - 2 = +\infty$

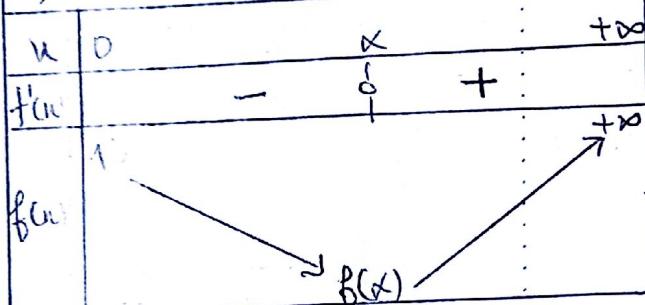
alors f admet une branche parabolique de direction $(0, 1)$.

2) $\lim_{n \rightarrow 0} \frac{f(n) - f(0)}{n} = \lim_{n \rightarrow 0} \frac{e^n - 1}{n} + 2\ln n - 2$

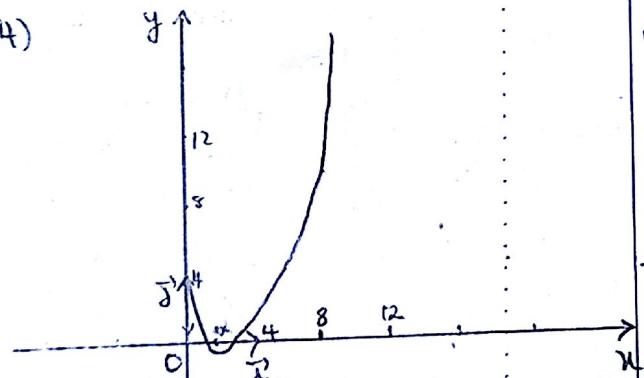
$\lim_{n \rightarrow 0} \frac{f(n) - f(0)}{n} = -\infty$ alors f

n'est pas dérivable mais elle admet une demi-tangente verticale en 0.

3)



4)



b) $A = \int_1^2 (e^x + 2x \ln x - 2x) dx \times 16 \text{ cm}^2$

$$A = \left(\left[e^x - x^2 \right]_1^2 + K \right) \times 16 \text{ cm}^2$$

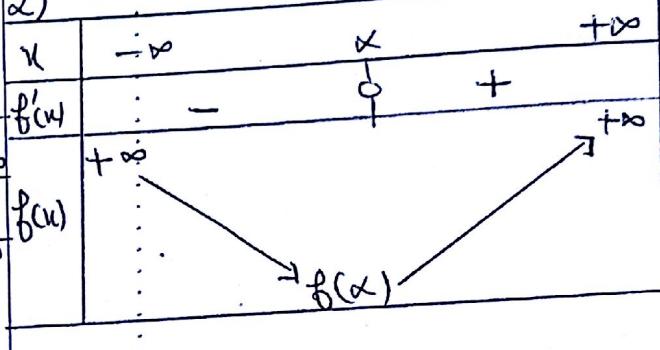
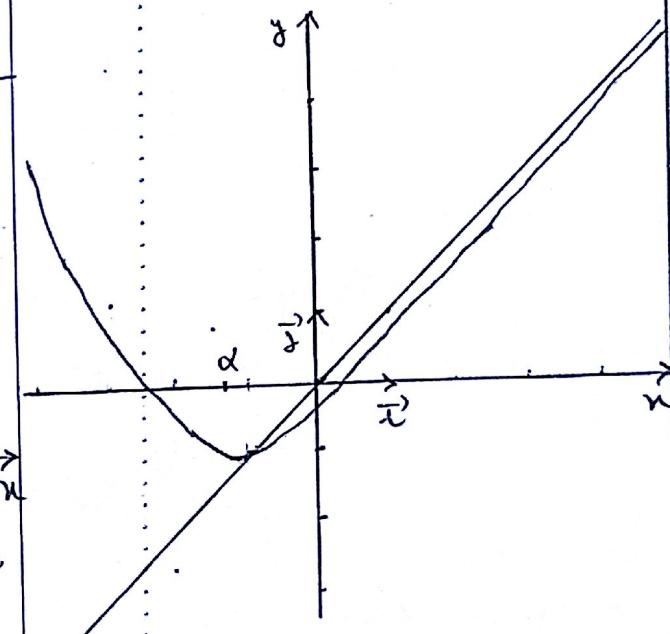
Exercice n° 110

A/1) $f'(x) = 1 + \frac{1}{4}x^2 e^{-x}$; $f''(x) = \frac{e^{-x}}{4}(1-x)$

$\forall x \in]-\infty; 1[$ f est strictement croissante
 $\forall x \in]1; +\infty[$ f est strictement décroissante

f est continue, dérivable et strictement croissante sur $]-\infty; 1[$ elle réalise une bijection de $]-\infty; 1[$ vers $]-\infty; \frac{4+e}{4}[$; $\exists x \in]-\infty; 4+e[$ tel que $f(x) = 0$; $f'(x) = 0$ admet une unique solution α telle que $f(\alpha) = 0$

2)



B/1) $U_0 > U_1$ (Vraie); supposons que $\forall k \in \mathbb{N}$, $U_k > 1$, $U_{k+1} > U_k$ et vérifions que $U_{k+1} > U_{k+2}$.

$$U_{k+1} > U_k \Rightarrow f(U_{k+1}) > f(U_k)$$

car f est strictement croissante

$f(U_{k+1}) = U_k$ et $f(U_k) = U_{k+1}$
 $\Rightarrow U_k > U_{k+1}$ d'où la proposition
est vraie au rang $k+1$ d'où
 $U_n > U_{n+1}$ donc la suite U_n est de
croissance.

2) a) $-1 \leq U_n \leq 0$

Comme (U_n) est décroissante alors
 $f(0) \leq f(U_n) \leq f(-1)$

$$-1 \leq f(U_n) \leq -\frac{1}{4} < 0$$

$$-1 \leq U_{n+1} \leq 0$$

$$b) U_{n+1} = U_n - \frac{1}{4}(U_n + 1)e^{-U_n} \text{ or } -1 < U_n < 0$$

$$U_{n+1} - U_n = -\frac{1}{4}(U_n + 1)e^{-U_n} < 0$$

$$3) a) 0 \leq U_n + 1 \leq \frac{3}{4}(U_n + 1)$$

$$b) \lim_{n \rightarrow +\infty} \left(\frac{3}{4}\right)^n = 0 \Rightarrow \lim_{n \rightarrow +\infty} U_n = -1.$$

Exercice n° 113

$$A/ mx^2 + 2x - 1 = 0$$

$$\text{Si } m = 0 \Rightarrow x = \frac{1}{2}.$$

$$\text{Si } m \neq 0 \quad \Delta' = m+1$$

$$S = \{x_1, x_2\} = -\frac{2}{m} \text{ et } P = x_1 x_2 = -\frac{1}{m}$$

$\forall x \in]-\infty, -1[$ pas de solution

Pour $m = -1$, une racine double

$$x = 1.$$

$m \in]-1; 0[$, deux racines dis-
tinctes positives.

$m = 0$, une racine positive. $x = \frac{1}{2}$

$m \in]0, +\infty[$; deux racines distinctes

de signe contraires

$$B/ 1) f_{00}(x) = \frac{1}{x} + \ln x; \quad f_{00}'(x) = \frac{2x-1}{x^2}$$

Corrigés

x	$-\infty$	0	$\frac{1}{2}$	$+\infty$
$f_{00}(x)$	-	-	0	+
$f_{00}'(x)$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
$f_{00}''(x)$	$-\infty$	0,6	$+\infty$	$+\infty$

2) c) $\forall x \in \mathbb{R}^*$, $f_{-1}'(x) = -\frac{(x-1)^2}{x^2} \leq 0$
relors f_{-1} est strictement décroissante
sur \mathbb{R}^* .

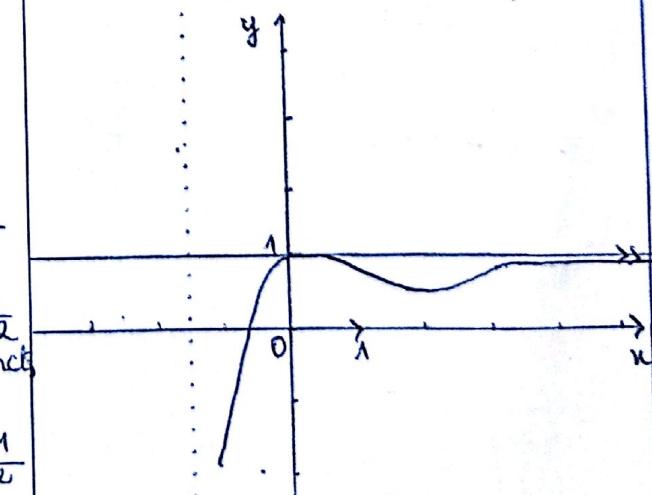
Exercice n° 114

$$A/ 1) \forall x \in \mathbb{R}, f'(x) = x(x-2)e^x$$

x	$-\infty$	0	2	$+\infty$
$f'(x)$	+	0	-	+
$f(x)$	$-\infty$	1	$-\frac{1}{4}e^2$	1

2) $\forall x \in [0; +\infty[$, $f(x) > f(0) > 0$ donc
l'équation $f(x) = 0$ n'admet pas
de solution dans $[0; +\infty[$.

Dans l'intervalle $]-\infty, 0]$, f est
continu et croissante. De plus
 $f(-\infty, 0] =]-\infty, 1]$ par conséquent
 $f(x) = 0$ admet une unique solution
 α dans $]-\infty, 0]$. $-0,71 < \alpha < -0,70$



4) b) on a: $0 \leq x \Rightarrow 1 \leq e^x \Rightarrow e^{-x} \leq 1$

$0 < e^{-x} < 1 \Rightarrow 0 < e^{-x} \leq e^{-2} \Rightarrow 0 < e^{-x} \leq e^{-2}$ (s'il y a un 3)

B/2) $f''(u) + 2f'(u) + f(u) = 1 - 2e^{-u}$

$\Rightarrow f''(u) = 1 - 2e^{-u} - f'(u) - 2f(u)$

$f(u) = u + 2e^{-u} - f'(u) + f(u) + h$

$F(0) = 0 \Rightarrow h = 0$

$F(u) = (u^2 + 2u + 2)e^{-u} + u - 2$

$A(\lambda) = [u - F(u)]_0^\lambda$

$A(\lambda) = [4(-\lambda^2 - 2\lambda - 2)e^{-\lambda} + 8] \text{ cm}^2$

C/3) $\psi(u) = (-u^2 - u - 1)e^{-u} + 1$

D/1) pour $a=1 \Rightarrow g(u) = (-u^2 + u + 1)e^{-u} + 1$

pour $a=0 \Rightarrow g_0(u) = -u^2 e^{-u} + 1$

$g_1(u) = g_0(u) \Rightarrow u = -1 \Rightarrow I(-1; 1-e)$

2) $g_a(u) = (u^2 - (a+2)u)e^{-u} = 0$

$u=0 \text{ ou } u=a+2$

3) $M_a(a+2; g_a(a+2))$ persons

$u=a+2 \text{ et } g_a(a+2)=y$

(F) $y = 1 - (u+2)e^{-u}$

Exercice n° 115

A/1) $g'(u) = -2(u + \frac{2}{u}) < 0$

u	0	$+\infty$
$g'(u)$	+	-
$g(u)$	$+\infty$	$-\infty$
$\forall u \in J_0; \& g(u) > 0$ $\forall u \in J_1; \& g(u) < 0$		

B/1) a) $f'(u) = \frac{g(u)}{2u^2}$

b) $\forall u \in J_0; \& f'(u) > 0$ donc est strictement croissante sur $J_0; \& f'(u) < 0$ alors f est strictement décroissante sur $J_1; \& f(u) \rightarrow -\infty$

$\lim_{u \rightarrow 0^+} f(u) = -\infty$ et $\lim_{u \rightarrow +\infty} f(u) = -\infty$

2) a) $\lim_{u \rightarrow +\infty} f(u) - y = \lim_{u \rightarrow +\infty} \frac{2\ln u}{u} - \frac{1}{u} = 0$

alors (D) est asymptote à (B) en $+\infty$.

b) $\forall u \in J_0; \& f(u) - y < 0$

$\forall u \in J\sqrt{2}; +\infty [f(u) - y > 0$

c) $u = \sqrt{e} \Rightarrow y = -\frac{\sqrt{e}}{e} + 3 \text{ A } \left(\frac{\sqrt{e}}{e} + 3 \right)$

3) a) $g(x) = 0 \Rightarrow \ln x = \frac{6-x^2}{4}$

$f(x) = -\frac{1}{2}x + 3 + \frac{\frac{6-x^2}{4}-1}{x} = -x + 3 - \frac{2}{x}$

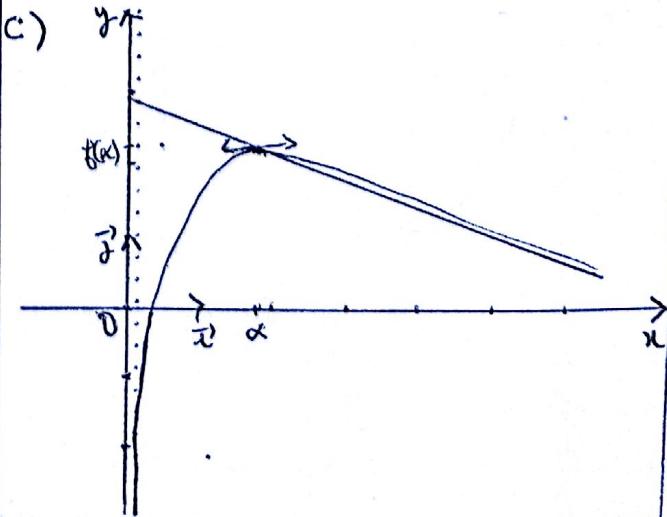
b) $f'(x) = -\frac{(x^2+2)}{x^2} < 0$ donc f est strictement décroissante sur $J_0; +\infty [$

comme f est décroissante,

$f(1,87) \leq f(x) \leq f(1,86)$

$2,199 \leq f(x) \leq 2,216$

c)



C/1) $I_0 = \int_{\ln e}^e e^x f(x) dx = \left[(e^x)^2 - \ln x \right]_{\ln e}^e$

$$I_0 = \frac{1}{4}$$

2) I_0 est la valeur en $u=0$ de l'aire du domaine limité par la courbe (f), la droite (D) et les droites $u=\ln e$ et $u=e$

3) $a_n = e^{\frac{n+1}{2}}$

a) $I_n = \int_{a_n}^{a_{n+1}} f(x) dx = \left[\frac{(x+2)^2}{2} - \frac{x+2}{2} \right] - \left[\frac{(n+1)^2}{2} - \frac{n+1}{2} \right]$

$$I_n = \frac{2n+1}{4}$$

b) $I_{n+1} - I_n = \frac{1}{2}$.

Exercice n° 117

A/ $g'(x) = -(x+2)e^{x-1}$

x	$-\infty$	-2	$+\infty$
$g'(x)$	+	0	-

$g(x)$

$g(1) = 0 \Rightarrow \forall x \in]-\infty; 1] \ g(x) \geq 0$
 $\forall x \in [1; +\infty[\ g(x) \leq 0$

B/ a) $f'(x) = g(x)$

x	$-\infty$	1	$+\infty$
$f'(x)$	+	0	-

$f(x)$

3) $f(x) - g = -x e^{x-1}$
 $\forall x \in]-\infty; 0] \ f(x) - g \geq 0$

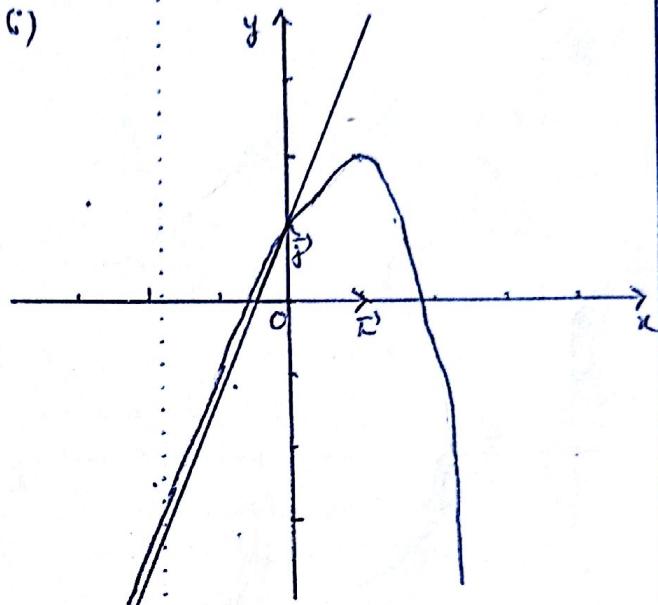
Corrigés

$\forall x \in [0; +\infty[\ f(x) - y \leq 0$.

4) $\lim_{x \rightarrow +\infty} \frac{f(x)}{x} = \lim_{x \rightarrow +\infty} 2 + \frac{1}{x} - \frac{e^{x-1}}{x} = -\infty$

alors la courbe (f) admet une branche parabolique de direction (0J):

5)



7) $A = \int_0^{\infty} (y - f(x)) dx \times 4 \text{ cm}^2$
 $= \int_0^{\infty} x e^{x-1} dx \times 4 \text{ cm}^2$

Utilisez l'intégration par parties pour déterminer A .

Exercice n° 119

A/ 1) $\begin{cases} x-1 \neq 0 \Rightarrow x \in]-\infty; 1] \cup]1; +\infty[\\ x > 0 \quad x \in]0; +\infty[\text{ et } f(0) = 1 \end{cases}$
 $\Rightarrow D_f = \mathbb{R} \setminus \{0\}$

2) $\lim_{x \rightarrow 1} \frac{f(x) - f(1)}{x-1} = \lim_{x \rightarrow 1} \ln|x-1| - \frac{1}{x-1}$

$\lim_{x \rightarrow 1} \frac{f(x) - f(1)}{x-1} = -\infty$ alors f n'est pas dérivable en 1.

3) $\lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0} \frac{(-x-1) \ln(x+1)}{-x} \ln x$

$\lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x} = +\infty$

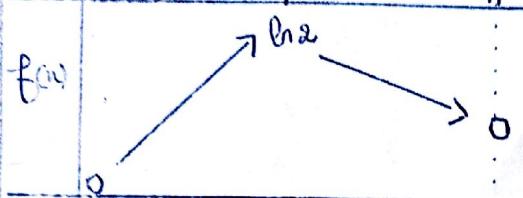
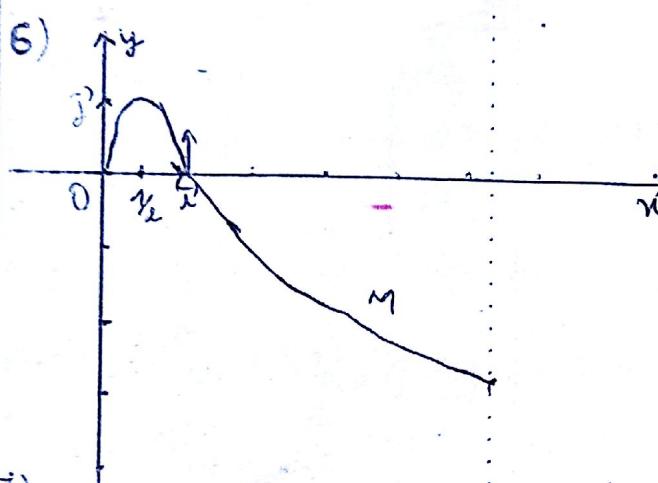
$$4) -f'(x) = \ln \frac{|x-1|}{x}$$

$$f'(x) = 0 \quad \ln \frac{|x-1|}{x} = 0$$

* si $x > 1 \quad x-1 = x$ impossible.

* si $0 < x < 1 \quad x = \frac{1}{x}$

x	0	$\frac{1}{2}$	1	$+\infty$
$f'(x)$	+	0	-	-



5) Dans l'intervalle $[0; 1]$, la courbe représentative de f est une parabole de sommet $A(\frac{1}{2}; b_{12})$; donc il existe un axe de symétrie.

$$B/2) \quad \vec{x} = e^t$$

$$\vec{y} = te^t - e^t \ln(1+e^t)$$

$$\vec{v}(t) = (e^t) \vec{x} + (te^t - e^t \ln(1+e^t)) \vec{y}$$

$$\vec{a}(t) \quad \vec{x} = e^t$$

$$\vec{y} = e^t + te^t - e^t \ln(1+e^t) - \frac{e^{2t}}{1+e^t}$$

$$3) \vec{v}(t) \cdot \vec{a}(t) = \begin{vmatrix} \vec{x} & \vec{x} \\ \vec{y} & \vec{y} \end{vmatrix}$$

$$\text{alors } \vec{a}(t) = t+1+e^t - \ln(1+e^t)$$

4) le mouvement de M est un mouvement circulaire de vitesse constante

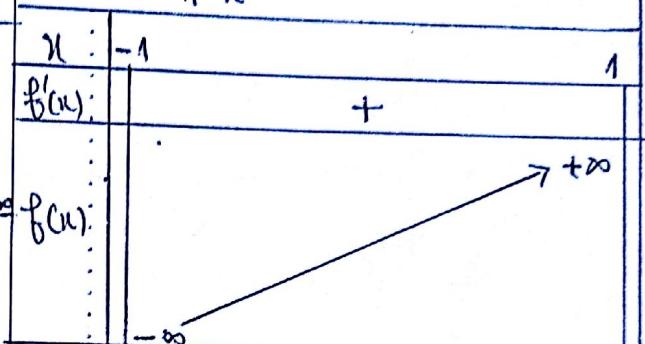
Corrigés

Exercice n°120

$$1) a) \frac{1+x}{1-x} > 0 \Rightarrow D_f =]-1; 1[$$

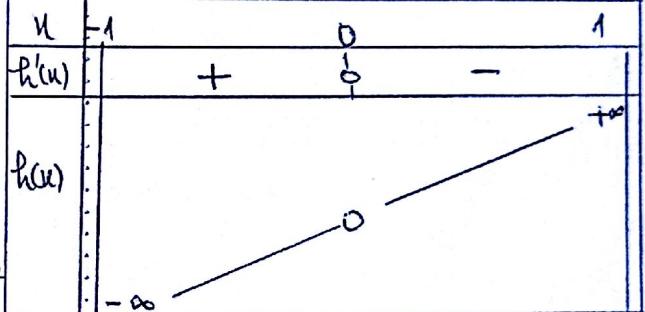
$f(-x) = -\frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) = -f(x)$ alors f est impaire.

$$f'(x) = \frac{1}{1-x^2} > 0 \quad \forall x \in]-1; 1[$$



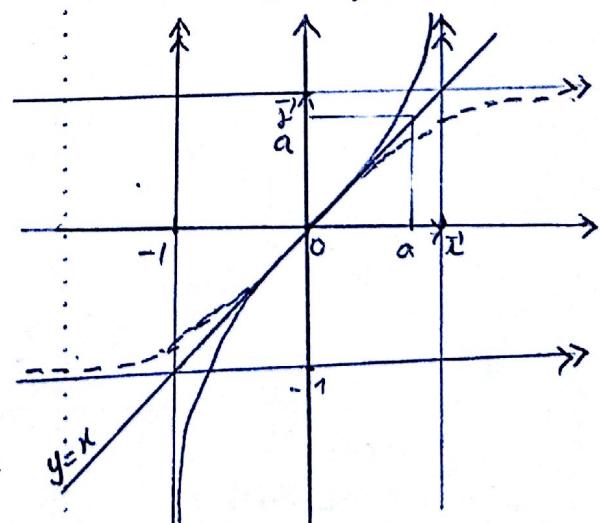
$$b) (T_0) : y = x$$

$$c) \text{ posons } h(x) = f(x) - x \Rightarrow h'(x) = \frac{x^2}{1-x^2}$$



$$\forall x \in]-1; 0] \quad f(x) - y \leq 0$$

$$\forall x \in [0; 1[\quad f(x) - y \geq 0$$



$$2) b) f^{-1}(x) = \frac{e^{2x}-1}{e^{2x}+1}$$

$$3) a) f(a) = 1 \Rightarrow a = f^{-1}(1) \Rightarrow a = \frac{e^a-1}{e^a+1}$$

$$b) \inf(1; f(x)) = \begin{cases} f(x) & \text{si } 0 \leq x \leq a \\ 1 & \text{si } a \leq x \leq 1 \end{cases}$$

$$A = \int_0^a (f(x) - f^{-1}(x)) dx + \int_a^1 (1 - f^{-1}(x)) dx$$

$$= \int_0^a f(x) dx + \int_a^1 dx - \int_0^1 f^{-1}(x) dx$$

$$\Rightarrow \int_0^a f(x) dx = \frac{1}{2} \int_0^a \ln\left(\frac{1+x}{1-x}\right) dx$$

$$u = \ln\left(\frac{1+x}{1-x}\right) \quad u' = \frac{2}{1-x^2}$$

$$V' = 1 \quad V = x$$

$$\int_0^a f(x) dx = \frac{1}{2} \left[a \ln\left(\frac{1+a}{1-a}\right) + \ln(1-a^2) \right]$$

II/ Se baser sur la première partie pour étudier les fonctions f_α .

$$1) h_\alpha(x) = f_\alpha(x) - x \quad D_{h_\alpha} =]-\alpha; \alpha[$$

$$\lim_{x \rightarrow -\alpha} h_\alpha(x) = -\infty \quad \lim_{x \rightarrow \alpha} h_\alpha(x) = +\infty$$

$$h'_\alpha(x) = \frac{x^2 - (\alpha^2 - \alpha)}{\alpha^2 - x^2} \quad \begin{array}{c|ccc} x & 0 & 1 & +\infty \\ \hline x^2 & & - & + \end{array}$$

1^{er} cas: $0 < \alpha \leq 1$

$\forall u \in D_{h_\alpha}$, $h'_\alpha(u) \geq 0$ h_α est monotone et strictement croissante. $\lim_{x \rightarrow -\alpha} h_\alpha(x) = -\infty$

$\lim_{x \rightarrow +\infty} h_\alpha(x) = +\infty$, h définit donc une bijection de D_{h_α} vers \mathbb{R} , or $h_\alpha(0) = 0$

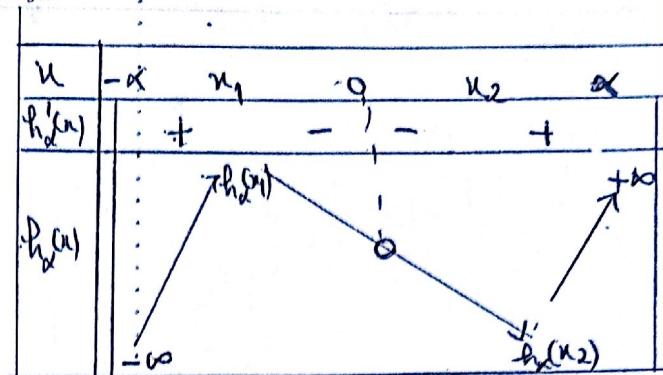
l'équation $f_\alpha(x) - x = 0$ admet une solution $x = 0$.

2^{er} cas: $\alpha > 1$

$$h'_\alpha(x) = 0 \Rightarrow x_1 = -\sqrt{\alpha^2 - \alpha}, x_2 = \sqrt{\alpha^2 - \alpha}$$

$\forall u \in D_{h_\alpha}$, $x^2 - \alpha^2 \geq 0 \Rightarrow h'_\alpha(u) > 0$ donc le signe de $x^2 - (\alpha^2 - \alpha)$

Corrigés



$$2) a) \alpha = 3 \Rightarrow u_2 = \sqrt{6} \quad h_3(\sqrt{6}) < 0$$

$$\forall x \in]0; \sqrt{6}[\quad h_3(x) < 0$$

$$\forall u_0 \in]0; \sqrt{6}[\quad h_3(u_0) < 0 = f_3(u_0) - u_0 < 0$$

$\Rightarrow u_0 > f_3(u_0)$ d'où f_3 est montone et strictement croissante sur $]-3; 3[$.

De plus f_3 définit une bijection de $]-3; 3[$ vers \mathbb{R} , on démontre que f_3^{-1} est monotone, strictement croissante sur \mathbb{R} et définit une bijection de \mathbb{R} vers $]-3; 3[$.

$$u_0 > f_3(u_0) \Leftrightarrow f_3^{-1}(u_0) > (f_3^{-1} \circ f_3)(u_0)$$

$$\text{or } f_3^{-1}(u_0) = u_1 \text{ et } (f_3^{-1} \circ f_3)(u_0) = u_0 \text{ d'où } u_1 > u_0.$$

Déduire que la suite (u_n) est croissante. $u_1 > u_0$ or f^{-1} est croissante sur \mathbb{R} .

$$f_3^{-1}(u_1) > f_3^{-1}(u_0) \Leftrightarrow u_2 > u_1 \text{ - Supposons}$$

$$u_{n+1} > u_n \Leftrightarrow f_3^{-1}(u_{n+1}) > f_3^{-1}(u_n)$$

$$\Rightarrow u_{n+2} > u_{n+1}$$

$$b) u_0 = \frac{1}{2} < \sqrt{6} \text{ or } x(3) > \sqrt{6} \Rightarrow u_0 < x(3)$$

supposons que $u_n < x(3)$ et démontrons que $u_{n+1} < x(3)$.

$$u_n < x(3) \Leftrightarrow f_3^{-1}(u_n) < f_3^{-1}(x(3))$$

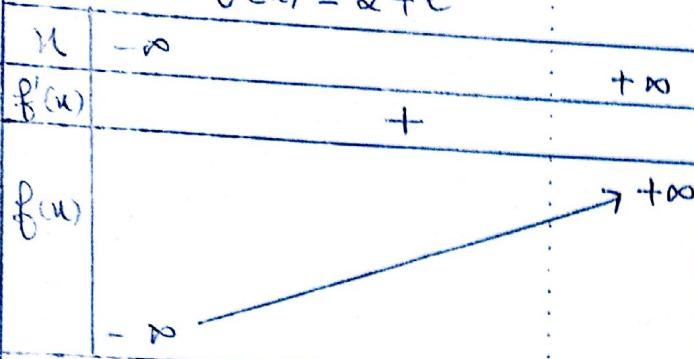
Exercice n° 1.21

$$A/1) (a-b)x + a-b-2 = 0 \Rightarrow a=2 \text{ b}=0$$

3) a) Les solutions de (E') sont les fonctions $h_a(x) = b x e^x$ où $b \in \mathbb{R}$.

b) $\forall x \in \mathbb{R} \Rightarrow h = 1 \Rightarrow \forall x \in \mathbb{R}, h^x = e^x + 2x$

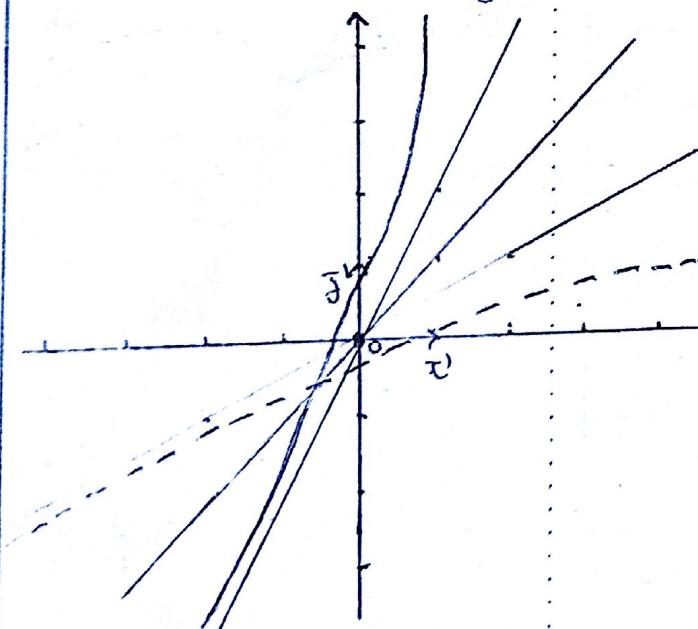
B/ a) $f'(x) = 2 + e^x$



f est continue et strictement croissante sur \mathbb{R} et $f(\mathbb{R}) = \mathbb{R}$ donc f est une bijection de \mathbb{R} sur \mathbb{R} .

b) $f(x) - 2x = e^x$ et $\lim_{x \rightarrow -\infty} f(x) - 2x = 0$ alors la droite d'équation $y = 2x$ est asymptote à f en $-\infty$.

$\lim_{x \rightarrow +\infty} \frac{f(x)}{x} = +\infty$. (f) admet une branche parabolique de direction l'axe des ordonnées aux voisinages de $+\infty$.



2) Posons $g(x) = f(x) - x \Rightarrow g'(x) = 1 + e^x$ donc g est continue, et strictement croissante sur \mathbb{R} . De plus $g(\mathbb{R}) = \mathbb{R}$ et comme $0 \in \mathbb{R}$, nous déduisons qu'il existe un seul nombre x_0 tel que

Corrigés

$g(x_0) = 0$ c'est à dire $f(x_0) = x_0$
 $g(-1) = -1 + \frac{1}{e} \Rightarrow g(-1) \times g(0) < 0$ l'équation $f(x) = x$ admet une solution unique x_0 telle que $-1 < x_0 < 0$.

3) a) $f(x_0) = x_0 \Rightarrow f^{-1}(x_0) = x_0 \Rightarrow h(x_0) = x_0$
b) f est strictement croissante sur \mathbb{R} donc sa bijection réciproque h l'est aussi;

$$\forall x \in]-\infty, x_0], \Rightarrow x \leq x_0$$

$$h(x) \leq x_0 \text{ car } f(x_0) = x_0$$

$$h(x) \in]-\infty, x_0]$$

$$4) h'(x) = \frac{1}{f'(h(x))} = \frac{1}{2 + e^{h(x)}} \text{ or } e^{h(x)} > 0$$

$$\frac{1}{2 + e^{h(x)}} < \frac{1}{2} \Rightarrow 0 < h'(x) < \frac{1}{2}$$

$$\text{P} \quad \text{U}_0 = -1 \text{ donc } U_0 \in]-\infty, x_0]$$

soit $n \in \mathbb{N}$, supposons que $U_n \in]-\infty, x_0]$
D'après partie B, question 3 b) $h(U_n) \in]-\infty, x_0]$ donc $U_{n+1} \in]-\infty, x_0]$.

$$9) \lim_{n \rightarrow +\infty} \left(\frac{1}{2}\right)^n |x_0 - U_n| = 0 \Rightarrow \lim_{n \rightarrow +\infty} U_n = x_0$$

Exercice n° 122

$$\text{A/1) } 2a(2ax+b) - 2(ax^2 + bx + c) = 0$$

$$b = 0; c = 0 \text{ et } a \in \mathbb{R} \Rightarrow P(x) = ax^2$$

$$\text{Vérifie } xP'(x) - 2P(x) = 0.$$

$$\text{2) a) } g = \frac{b}{P} \Rightarrow f = gP \Rightarrow f' = g'P + P'g$$

f est solution si et seulement si

$$xP'(x) - 2P(x) = \ln x$$

$$ax^3g'(x) + 2ax^2g(x) - 2ax^2g(x) = \ln x$$

d'où $g'(x) = \frac{\ln x}{ax^3}$ est une primitive de la fonction $x \mapsto \frac{\ln x}{ax^3}$.

$$\text{b) } \int_{e^{-1}}^x \frac{\ln t}{t^3} dt \quad \left\{ \begin{array}{l} u = \ln t \quad u' = \frac{1}{t} \\ v' = \frac{1}{t^3} \quad v = -\frac{1}{2t^2} \end{array} \right.$$

$$\int_e^n \frac{e^{xt}}{t^3} dt = \left[-\frac{1}{2t^2} e^{xt} \right]_e^n + \frac{1}{2} \int_e^n \frac{1}{t^3} dt$$

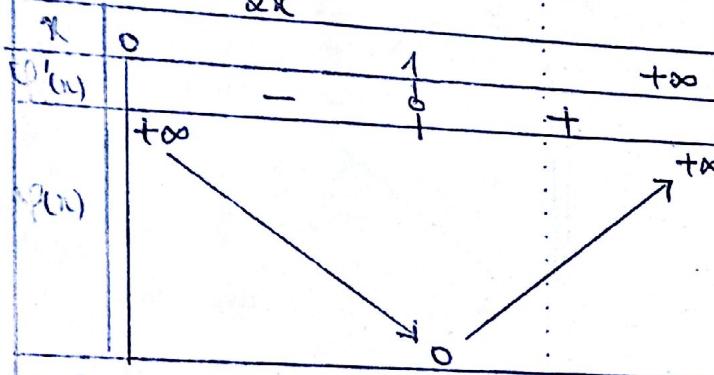
$$= -\frac{1}{4n^2} (1 + 2\ln n)$$

c) $g'(x) = \frac{1}{9} \frac{\ln x}{x^3} \Rightarrow g(x) = -\frac{1}{4} \frac{1}{x^2} (1 + \ln x^2) + C$
 Φ est solution de (E) (\Leftrightarrow) $f(x) = g(x) + p(x)$

 $f(x) = -\frac{1 + \ln x^2}{4} + \alpha x^2 \quad (\alpha \in \mathbb{R})$

3) a) $\Phi'(1) = 0 \Rightarrow -\frac{1}{4} + \alpha = 0 \Rightarrow \alpha = \frac{1}{4}$
 $\Phi(x) = -\frac{1 + \ln x^2}{4} + \frac{1}{4} x^2$

b) $\Phi'(x) = \frac{x^2 - 1}{2x}$



B/ 1) $I(\lambda) = \int_{\lambda}^1 \Phi(x) dx$

$$I(\lambda) = \left[-\frac{1}{4} x + \frac{1}{12} x^3 - \frac{1}{2} (x \ln x - x) \right]_{\lambda}^1$$

$$\lim_{\lambda \rightarrow 0} I(\lambda) = \frac{1}{3}$$

3) a) $1 \leq k \leq n-1 \Rightarrow 0 \leq \frac{k}{n} \leq \frac{k+1}{n} \leq 1$

or Φ est décroissante sur $[0; 1]$

$$\frac{k}{n} \leq x \leq \frac{k+1}{n} \Rightarrow \Phi\left(\frac{k+1}{n}\right) \leq \Phi(x) \leq \Phi\left(\frac{k}{n}\right)$$

b) On sait que $\forall x \in \left[\frac{k}{n}; \frac{k+1}{n}\right]$,
 $\Phi\left(\frac{k+1}{n}\right) \leq \Phi(x) \leq \Phi\left(\frac{k}{n}\right)$

$$\int_{\frac{k}{n}}^{\frac{k+1}{n}} \Phi\left(\frac{k+1}{n}\right) dx \leq \int_{\frac{k}{n}}^{\frac{k+1}{n}} \Phi(x) dx \leq \int_{\frac{k}{n}}^{\frac{k+1}{n}} \Phi\left(\frac{k}{n}\right) dx$$

$$\Phi\left(\frac{k+1}{n}\right)\left(\frac{1}{n}\right) \leq \int_{\frac{k}{n}}^{\frac{k+1}{n}} \Phi(x) dx \leq \Phi\left(\frac{k}{n}\right) \times \frac{1}{n}$$

Corrigés

$$\frac{1}{n} \sum_{k=1}^{n-1} \Phi\left(\frac{k+1}{n}\right) \leq \sum_{k=1}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} \Phi(x) dx \leq \sum_{k=1}^{n-1} \frac{1}{n} \Phi\left(\frac{k}{n}\right)$$

$$\text{or } \sum_{k=1}^{n-1} \Phi\left(\frac{k+1}{n}\right) = \sum_{k=2}^n \Phi\left(\frac{k}{n}\right)$$

$$\sum_{k=1}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} \Phi(x) dx = \int_{\frac{1}{n}}^{\frac{2}{n}} \Phi(x) dx + \int_{\frac{2}{n}}^{\frac{3}{n}} \Phi(x) dx + \dots + \int_{\frac{n-1}{n}}^1 \Phi(x) dx$$

$$= \int_{\frac{1}{n}}^1 \Phi(x) dx = I\left(\frac{1}{n}\right)$$

on a donc $\frac{1}{n} \sum_{k=1}^{n-1} \Phi\left(\frac{k}{n}\right) \leq I\left(\frac{1}{n}\right) \leq \frac{1}{n} \sum_{k=1}^{n-1} \Phi\left(\frac{k}{n}\right)$

Exercice n° 123

A/ a) $x \neq 0$; $2 + \ln x^2 \neq 0$ $f(x) = -1$

$$D_f = \mathbb{R} \setminus \left\{ -\frac{1}{e}; 0; \frac{1}{e} \right\}$$

b) posons $x = \ln x^2 \Rightarrow f(x) = \frac{-x+2}{x+2}$

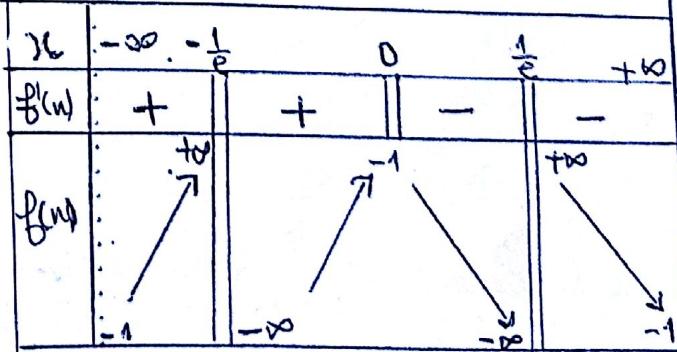
$\forall x \in \mathbb{R} \setminus \{-2\}$, f admet donc un prolongement par continuité au point 0.

2) a) $\lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x} = \lim_{x \rightarrow 0} \frac{3 - 2 \ln |x|}{x(2 + 2 \ln |x|)}$

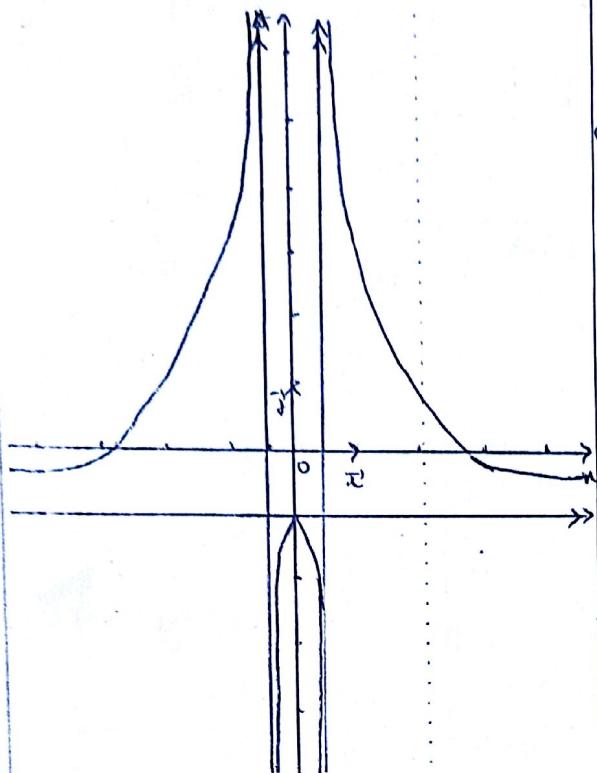
$$x = -u \quad = \lim_{x \rightarrow 0} \frac{3 - 2 \ln(-x)}{2(x + x \ln x)}$$

$$\lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x} = -\infty \quad \lim_{x \rightarrow 0} \frac{f(x) - f(0)}{u} = +\infty$$

b) $f'(x) = \frac{-8}{x(2 + \ln x^2)^2}$



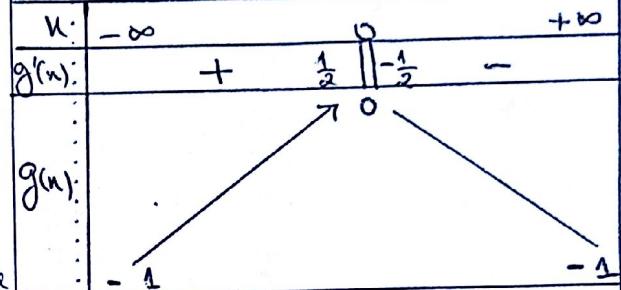
c) $x = -\frac{1}{e}$; $x = \frac{1}{e}$ et $y = -1$ sont des asymptotes parallèles aux axes.



Corrigé

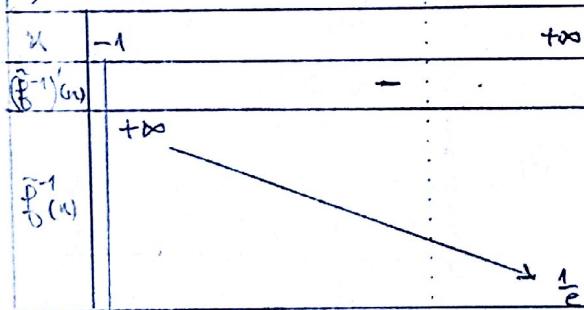
$\mathbb{J}_{e^x+1}^{1+\infty}$ vers $\mathbb{J}_{-1+\infty}^1$ ou $\mathbb{J}_{-1+\infty}^{2e^{-1+\infty}}$
 Il existe donc un unique réel x_0 de $\mathbb{J}_{e^x+1}^{1+\infty}$ tel que $\tilde{f}(x_0) = 2$.
 De plus $\lim_{x \rightarrow \frac{1}{e}} \tilde{f}(x) = +\infty$ et $\tilde{f}(1) = 1$
 $\forall t \in \mathbb{J}_{1+\infty}^1 \Rightarrow x_0 \in \mathbb{J}_{e^x+1}^1$
 $0,7 < x_0 < 0,8$

B/ a) $1+e^x \neq 0 \Leftrightarrow \text{Dom } g = \mathbb{R}$.
 $g'(x) = \frac{-2e^x}{(1+e^x)^2} \quad \forall x \in \mathbb{J}_{0+\infty}^{+\infty}$.



3) a) D'après TV de f , \tilde{f} est continue et strictement décroissante sur $\mathbb{J}_{e^x+1}^{1+\infty}$ alors \tilde{f} réalise une bijection de $\mathbb{J}_{e^x+1}^{1+\infty}$ avec $\mathbb{J}_{-1+\infty}^1$ d'où elle admet une bijection réciproque notée \tilde{f}^{-1} .

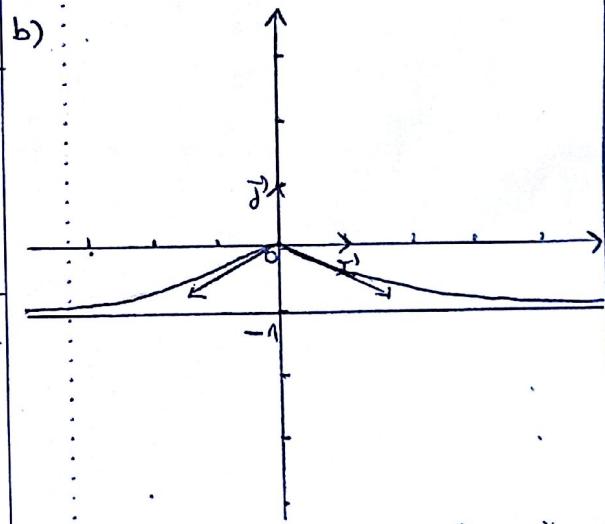
b)



d) $(\tilde{f}^{-1})'(0) = \frac{1}{\tilde{f}'(\tilde{f}^{-1}(0))}$ or $\tilde{f}^{-1}(0) = e$
 $\tilde{f}'(0) = -\frac{8}{16e}$

$$(\tilde{f}^{-1})'(0) = -\frac{16e}{8} = -2e.$$

e) \tilde{f} réalise une bijection ore



2) a) $g(x) = \frac{ae^x}{1+e^x} + b = \frac{1+e^x - 2e^x}{1+e^x}$
 $a = -2$ et $b = 1$.

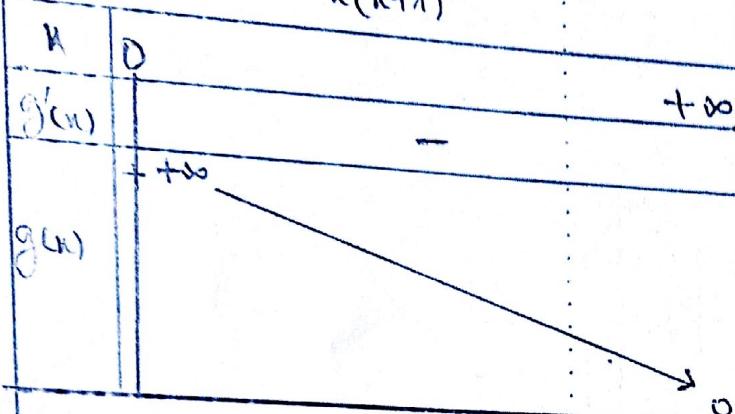
b) $A = \int_0^x (g(u) + 1) du = \left[-2 \ln(1+e^u) + 2u \right]_0^x$

Exercice n° 124

Corrigés

A/ 1) $\lim_{n \rightarrow +\infty} g(n) = \lim_{n \rightarrow +\infty} 2\ln(n+1) - 2\ln n - \frac{1}{n+1} = +\infty$

2) $g'(n) = -\frac{n+2}{n(n+1)^2}$



$\forall n \in]0; +\infty[\quad g(n) > 0$.

B/ b) $\lim_{n \rightarrow 0} \frac{f(n) - f(0)}{n} = f'(0) = 0$ alors f est dérivable en 0 et $f'(0) = 0$.

2) a) $f'(n) = n g(n)$ pour $n > 0$ alors f est strictement croissante sur $]0; +\infty[$.

if) a) $P(x) = f(x) - (x - \frac{1}{2})$
 $= n^2 \left[\ln\left(\frac{n+1}{n}\right) - \frac{1}{2}(n - \frac{1}{2}) \right]$

$P(x) = n^2 \times I(x)$.

b) on sait que $\frac{1}{1+t} - 1+t = \frac{t^2}{1+t}$
 $0 < t \Rightarrow 1+t > 1 \Rightarrow 0 < \frac{1}{1+t} < 1$
 car la fonction $\frac{1}{t}$ est décroissante sur $]0; +\infty[\Rightarrow 0 \leq \frac{t^2}{1+t} \leq t^2$

d'où $0 \leq \frac{1}{1+t} - 1+t \leq t^2$

c) $0 \leq \int_0^t \left(\frac{1}{1+t} - 1+t \right) dt \leq \int_0^t t^2 dt$
 $0 \leq I(x) \leq \frac{1}{3}x^3$

e) $\lim_{n \rightarrow +\infty} f(n) - (n - \frac{1}{2}) = 0$ alors

$y = n - \frac{1}{2}$ est oblique à la courbe (f)

f) $f(n) - (n - \frac{1}{2}) > 0$

C/ 2) $A(\lambda) = \int_{\lambda}^1 n^2 \ln\left(\frac{n+1}{n}\right) dn$

$$u = \ln\left(\frac{n+1}{n}\right) \quad u' = -\frac{1}{n(n+1)}$$

$$v = n^2 \quad v' = \frac{1}{3}n^3$$

$$A(\lambda) = \left[\frac{1}{3}n^3 \ln\left(\frac{n+1}{n}\right) \right]_{\lambda}^1 + \frac{1}{3} \int_{\lambda}^1 \left(\frac{1}{n+1} - 1+n \right) dn$$

3) a) $\lim_{\lambda \rightarrow 0} A(\lambda) = \frac{2}{3} \ln 2 - \frac{1}{2}$

b) $S = \left(\frac{8}{3} \ln 2 - 2 \right) \text{cm}^2 = 1,84 \text{cm}^2$

Exercice n° 127

I/ 1) a) $D_f = \mathbb{R}$

$$f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} = \frac{e^{2x} \left(\frac{e^{-2x} - 1}{e^{2x} + 1} \right)}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{2x}}$$

$f(-x) = -f(x)$

b) $f'(x) = \frac{4e^{2x}}{(1+e^{2x})^2} > 0$

x	$-\infty$	0
$f'(x)$	+	
$f(x)$		1

2) $f_1(x) = f(x) - x = \frac{e^{2x} - 1}{e^{2x} + 1} - x$
 $f_1'(x) = \frac{-(e^{2x} - 1)^2}{(e^{2x} + 1)^2} \leq 0$ donc f_1 est dérivable sur \mathbb{R} , $\forall x \in \mathbb{R}$, f_1 est décroissante $\Rightarrow f_1(0) = 0$
 $\forall x \in]-\infty; 0[\quad f_1(x) > 0$
 $\therefore \forall n \in \mathbb{N} \quad f_1(n) > 0$

$$\begin{aligned}
 4) \frac{f(x) + f(\beta)}{1 + f(x) \cdot f(\beta)} &= \frac{(e^{2x} - 1)(e^{2\beta} + 1) + (e^{2\beta} - 1)(e^{2x} + 1)}{(e^{2x} - 1)(e^{2\beta} + 1) + (e^{2\beta} - 1)(e^{2x} + 1)} \\
 &= \frac{e^{2(x+\beta)} - 1}{e^{2(x+\beta)} + 1} = f(x+\beta).
 \end{aligned}$$

C) f étant une bijection de \mathbb{R} sur I , pour tout couple (u, v) d'éléments de I , il existe un unique couple de réels (α, β) tel que $f(\alpha) = u$ et $f(\beta) = v$ alors $\frac{u+v}{1+uv} = f(\alpha+\beta)$ avec $f(\alpha+\beta) \in I$

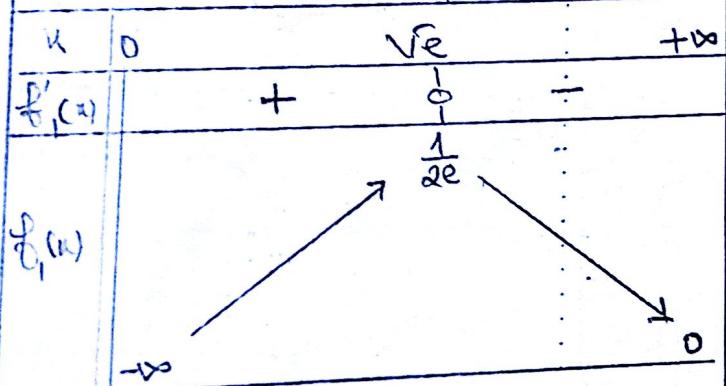
$$\text{II/1)} g(u) = \frac{1}{2} \left(\frac{1}{1+u} + \frac{1}{1-u} \right)$$

2) a) La fonction G est continue et intégrable sur $]-1, 1[$ donc G est définie sur $]-1, 1[$ et

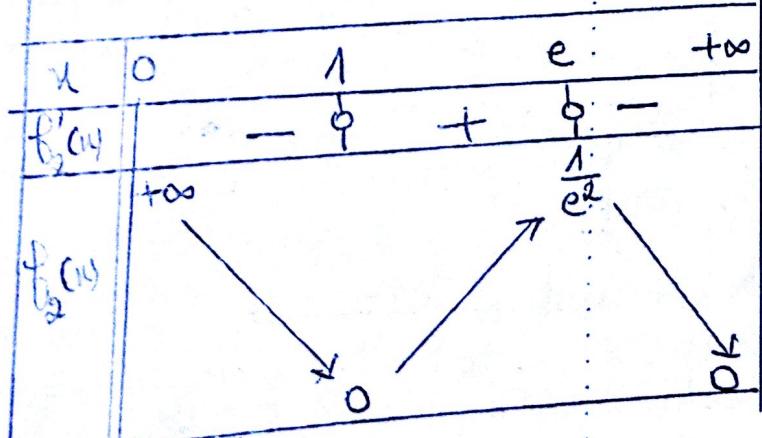
$$G(t) = \int_0^t \frac{1}{1-t^2} dt = \frac{1}{2} \ln \left(\frac{1+t}{1-t} \right)$$

Exercice n° 129

$$\text{A/1)} \forall n \in \mathbb{N}, f'_1(x) = \frac{1-2\ln x}{x^3}$$



$$\text{2)} \forall n \in \mathbb{N}, f'_2(x) = \frac{2(1-\ln x)\ln x}{x^3}$$

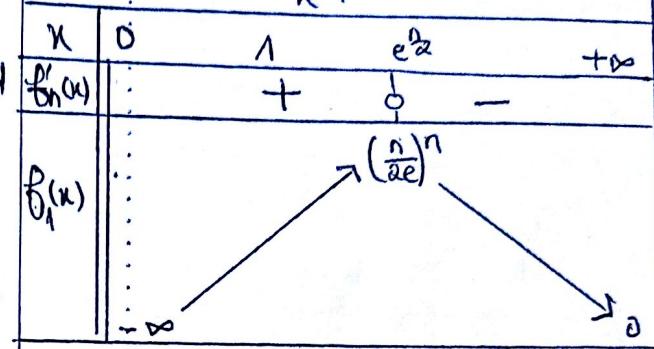
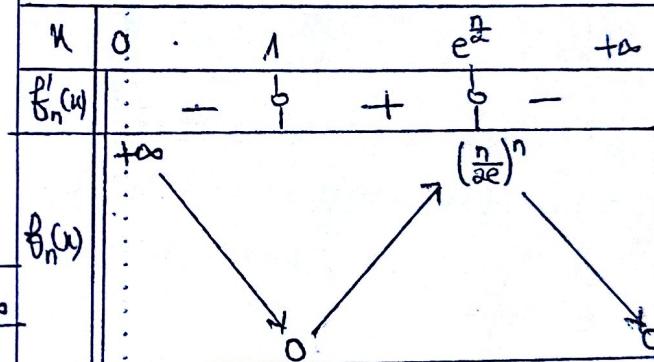


Corrigés

B/1) $f'_1(1) = 0$ $f'_1(e) = \frac{1}{e^2}$. Toutes les courbes (f'_n) passent par deux points fixes : $A(1, 0)$ et $B(e, \frac{1}{e^2})$.

$$\text{2)} \forall n \text{ impair}, \forall n \in \mathbb{N}, f'_n(x) = \frac{(n-2\ln x)(\ln x)^{n-1}}{x^3}$$

$$f'_n(x) = \frac{(n-2\ln x)(\ln x)^{n-1}}{x^3}$$



$$\text{C/1) a)} 1 \leq x \leq e \quad 0 \leq (\ln x)^n \leq 1 \quad x^2 \geq 0$$

$$0 \leq \int_1^e \frac{(\ln x)^n}{x^2} \leq \frac{1}{n^2} \quad \text{d'où } \forall n \geq 1, I_n \geq 0.$$

$$\text{b)} I_{n+1} - I_n = \int_1^e \frac{(\ln x - 1)(\ln x)^n}{x^2} dx$$

$\forall n \in [1; e], \ln x - 1 \leq 0$ ($\ln x \geq 0 \Rightarrow x^2 \geq 0$)
(I_n) est décroissante et convergente.

$$\text{d) a)} I_1 = \left[\frac{1}{n} \ln x \right]_1^e + \int_1^e \frac{1}{n^2} dx = 1 - \frac{2}{e}$$

$$\text{3) } A_1 = 20(I_1 - I_2) = 20\left(\frac{3}{e} - 1\right).$$

$$\text{5) b)} 0 \leq I_n \leq 1; 0 \leq \frac{1}{n!} I_n \leq \frac{1}{n!}$$

$$\lim_{n \rightarrow +\infty} \frac{1}{n!} = 0 \quad \text{d'où } \lim_{n \rightarrow +\infty} \frac{1}{n!} I_n = 0$$

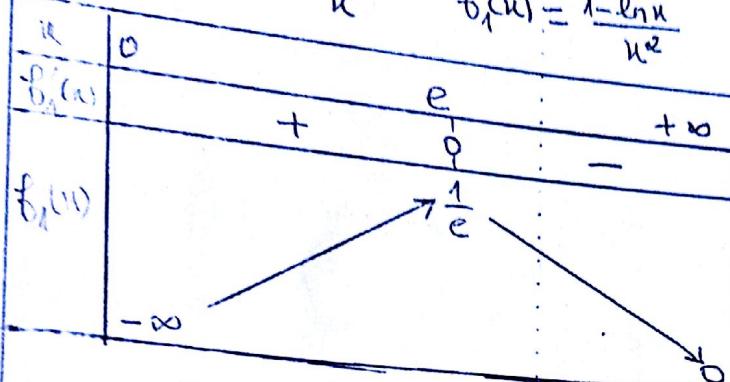
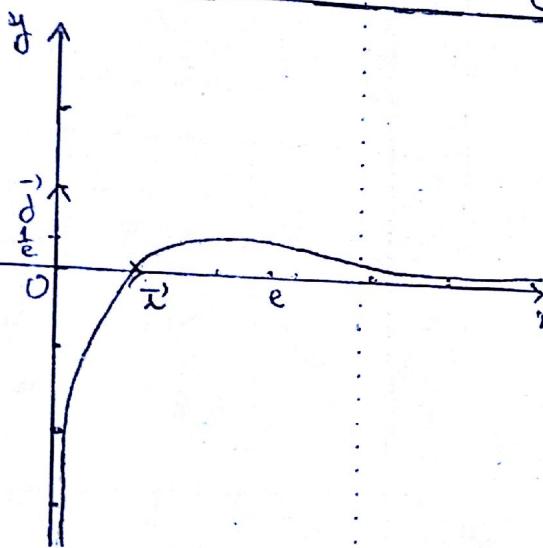
$$\lim_{n \rightarrow +\infty} 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \text{ et } \lim_{n \rightarrow +\infty} \frac{1}{n!} I_n = 0$$

$$\Rightarrow \lim_{n \rightarrow +\infty} 1 - \frac{1}{e} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) = 0$$

$$\lim_{n \rightarrow +\infty} 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = e$$

Exercice n° 13

A/1) $f_1(x) = \frac{\ln x}{x}$

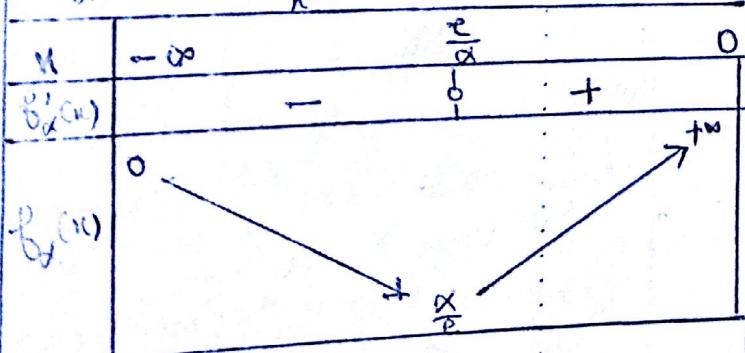


2) 1^{er} cas $\alpha < 0$

$$D_{f_\alpha} =]-\infty; 0[: \lim_{x \rightarrow 0^+} f_\alpha(x) = +\infty$$

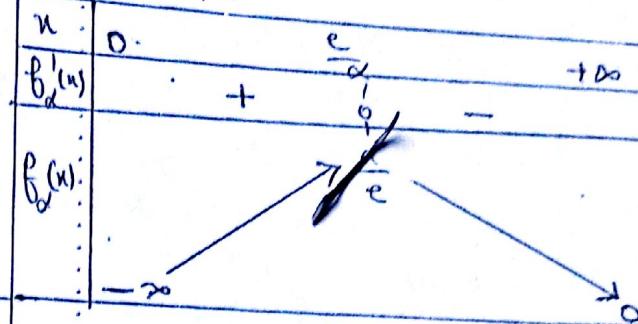
$$\lim_{x \rightarrow -\infty} f_\alpha(x) = 0$$

$$f_\alpha'(x) = \frac{1 - \ln \alpha x}{x^2}$$



Corrigés

2^{er} cas $\alpha > 0$



$$f_\alpha(x) = 0 \Rightarrow \alpha x = 1 \Rightarrow (x; \alpha)$$

3) a) $f_\alpha(x) = \frac{1}{x} \ln(\alpha x)$

$$F_\alpha(x) = \frac{1}{2} [\ln(\alpha x)]^2$$

b) $A_\alpha(a) = F_\alpha(a) - F_\alpha(0)$

B/1) $\alpha^x = x \Rightarrow \frac{\ln x}{x} = \ln a \quad (x > 0)$

les solutions de (E) sont donc les abscisses des points d'intersection de la courbe (f_1) avec la droite d'équation $y = \ln a$.

b) $b^c = c^b \Rightarrow \frac{\ln b}{b} = \frac{\ln c}{c} \Rightarrow f_1(b) = f_1(c)$

or $f_1(2) = \frac{\ln 2}{2}$ et $f_1(4) = \frac{2 \ln 2}{4} = \frac{\ln 2}{2}$

d'où $b=2$ et $c=4$.

C/1) a) (T_α): $y = \frac{1 - \ln \alpha t}{t^2} - \frac{1 - 2 \ln \alpha t}{t}$

b) $y = \frac{1 - \ln \alpha t}{t^2} - \frac{1 - \alpha \ln \alpha t}{t}$

$$t^2 y - \alpha t + t = (2t - \alpha) \ln(\alpha t)$$

$$\begin{cases} 2t - \alpha = 0 \\ t^2 y - \alpha t + t = 0 \end{cases} \Rightarrow \begin{cases} x = 2t \\ y = \frac{1}{t} \end{cases}$$

lorsque α varie, t restant fixe, toutes les droites (T_α) passent le point fixe $I_t(2t; \frac{1}{t})$.

2) $y = \frac{2}{x} \quad x > 0$ lorsque t parcourt $]0; +\infty[$. C'est donc une hyperbole

$$\begin{cases} x_G = \frac{x-2x}{-1} = x \\ y_G = \frac{f_2(x) - 2f_3}{-1} = y_G = \frac{\ln x - \ln 2x}{x} \end{cases}$$

$$y_G = \frac{\ln \frac{x}{2} x}{x} \Rightarrow G \in (f_{9/2})$$

lorsque n décrit $]0; +\infty[$, G décrit la courbe $(f_{9/2})$.

$$3) \begin{cases} x_G = \frac{x-\lambda x}{1-\lambda} = x \\ y_G = \frac{1}{1-\lambda} \left(f_{n(\lambda)} x - \lambda f_{n(\lambda)}' x \right) \end{cases}$$

$$y_G = \frac{1}{\lambda} \cdot \frac{1}{1-\lambda} \left(\ln \left(\frac{x \lambda}{x + \lambda} \right) x \right)$$

$$y_G = \frac{1}{\lambda} \cdot \ln \left(\left(\frac{x}{x+\lambda} \right)^{1-\lambda} x \right)$$

lorsque x parcourt $]0; +\infty[$, le point G décrit la courbe (f_{β}) avec $\beta = \left(\frac{x}{x+\lambda} \right)^{1-\lambda}$.

Exercice n° 1.33

1/1) a) $x \neq 0$ et $f_{n(\lambda)}(0) = 0 \Rightarrow Df_{n(\lambda)} = \mathbb{R}$.

2) a) $\forall x \in Df_{n(\lambda)}, \exists n \in Df_{n(\lambda)}, f_n(-x) = (-1)^n x^n \ln|x|$

- si n est pair, f_n est pair alors la courbe admet l'axe des ordonnées comme axe de symétrie.

- si n est impair, f_n est impair, la courbe admet le point 0 comme centre de symétrie.

b) $f_{n(\lambda)}(0) = f_{n(\lambda)}(1) = f_{n(\lambda)}(-1) = 0$ alors $(f_{n(\lambda)})$

passent par: $O(0;0)$; $A(1;0)$; $B(-1;0)$

$$c) \lim_{x \rightarrow 0} \frac{f_{n(\lambda)}(x) - f_{n(\lambda)}(0)}{x} = \lim_{x \rightarrow 0} x^{n-1} \ln|x|$$

$$= \begin{cases} -\infty \text{ si } n=1 \\ 0 \text{ pour } n \geq 2 \end{cases}$$

Corrigés

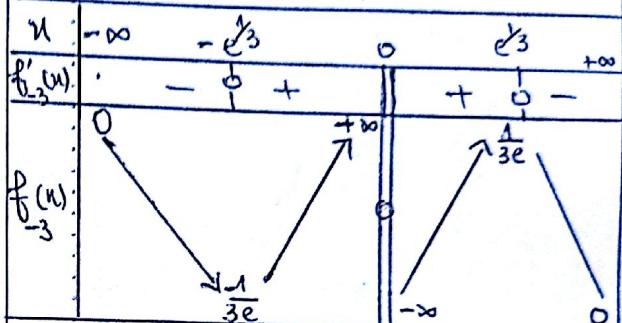
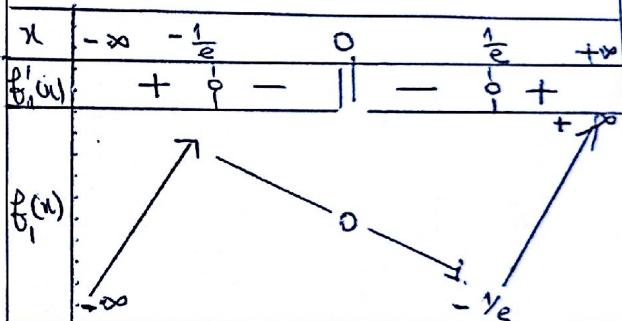
f est dérivable en 0 pour $n \geq 2$.

$$d) f'_n(x) = (1+n \ln|x|) x^{n-1}$$

$f'_n(1) = 1$ et $f'_n(1) = 0$ alors (f_n) admettent au point 1, toutes les tangentes de l'équation: $y = x-1$.

$$3) f'_{-3}(x) = \frac{\ln|x|}{x^3}, f'_1(x) = x \ln|x|$$

$$f'_{-2}(x) = x^2 \ln|x|$$



$$4) f'_{n(\lambda)}(x) = 0 \Rightarrow (1+n \ln|x|) x^{n-1} = 0$$

$$x=0 \text{ ou } x = -e^{-\frac{1}{n}} \text{ ou } x = e^{-\frac{1}{n}}$$

$$x_n > 0 \quad (\Rightarrow x_n = e^{-\frac{1}{n}})$$

$$y_n = f_n(x_n) = x_n^n \ln|x_n| = e^{-n} \cdot (-\frac{1}{n})$$

$$M_n \left(\frac{-1}{n}, -\frac{1}{n} \right)$$

$$\begin{cases} x = e^{\frac{1}{n}} \\ y = -\frac{1}{ne} \end{cases} \Rightarrow \begin{cases} n = -\frac{1}{ey} \\ y = \frac{ey}{e} \end{cases}$$

Tous les points M_n sont sur une courbe (P) d'équation $y = \frac{ey}{e}$ et $x > 0$.

$$\text{II/1) } I_n(x) = \int_1^x f_n(u) du$$

$$U = \ln(u) \quad u = \frac{1}{n} \quad V = u^n \quad v = \frac{1}{n+1} u^{n+1}$$

$$I_n(x) = \left[\frac{1}{n+1} u^{n+1} \ln(u) \right]_1^x - \frac{1}{n+1} \int_1^x u^n du$$

$$I_n(x) = \frac{1}{n+1} x^{n+1} \ln x - \frac{1}{(n+1)^2} \left[x^{n+1} \right]_1^x$$

$$\text{2) } n=2 \Rightarrow I_2(x) = \frac{1}{3} x^3 \ln x - \frac{1}{9} (x^3 - 1)$$

$$\lim_{n \rightarrow 0} I_2(x) = \frac{1}{9}$$

$$\text{b) } \bar{f}_B = \frac{1}{\beta} \int_0^\beta f_2(u) du = \frac{1}{3} \beta^2 \left(\ln \beta - \frac{1}{3} \right) + \frac{1}{9} \frac{1}{\beta}$$

la valeur moyenne de f_2 sur $[0, \beta]$ est nulle car $\ln \beta = \frac{1}{3} \Rightarrow \beta = \sqrt[3]{e}$.

$$f_{\bar{f}_B}(\beta) = \frac{1}{3} \times \frac{1}{\beta} e \Rightarrow H\left(e^{\frac{1}{3}}; \frac{1}{3}e\right)$$

Exercice 134

$$\text{A/1) } D_{f_a} = \{ u \in \mathbb{R} / a-u \neq 0 \text{ et } \frac{a+u}{a-u} > 0 \}$$

$$= \begin{cases}]-a; a[& \text{si } a > 0 \\]a; -a[& \text{si } a < 0 \end{cases}$$

$$D_{f_a} =]-|a|; |a|[\text{ si } a \neq 0.$$

$$f_a(-x) = \ln \sqrt{\frac{a-x}{a+x}} = -\ln \sqrt{\frac{a+x}{a-x}} = -f_a(x)$$

donc f_a est impaire.

$$\text{2) } \text{cas: } a < 0 \quad D_{f_a} =]a; -a[$$

$$\lim_{x \rightarrow -a} \sqrt{a+x} = +\infty \quad \text{et} \quad \lim_{x \rightarrow a} \sqrt{a+x} = 0$$

corrigé

$x=a$ et $x=-a$ sont des asymptotes verticales.

$$3) f'_a(x) = \frac{a}{(a-x)(a+x)}$$

$$\forall u \in D_{f_a} \quad (a-u)(a+u) > 0$$

1^{er} cas: $a < 0 \quad f'_a(x) < 0$

2^{em} cas: $a > 0 \quad f'_a(x) > 0$

4) a) $\forall a \in \mathbb{R}^*, f_a$ est continue, monotone sur D_{f_a} avec $f_a(D_{f_a}) = \mathbb{R}$ d'où f_a est une bijection de D_{f_a} sur \mathbb{R}

$$\text{b) } y = f_a(x) \Rightarrow e^{2y} = \frac{a+x}{a-x} \Rightarrow$$

$$f_a(x) = a e^{\frac{2u}{e^{2u}+1}}$$

$$5) \text{a) } f_a(u) = \ln \left(\sqrt{\frac{1+\frac{u}{a}}{1-\frac{u}{a}}} \right) = f_1\left(\frac{u}{a}\right)$$

l'affinité orthogonale d'axe $(0, \bar{f})$ et de rapport à transformé (f_1) en (f_a) :

$$\text{b) } C_1 = g^{-1}(C_a) \Rightarrow C_a = g[C_1(g^{-1}(ca))]$$

$$= g \circ g^{-1}(ca)$$

$g \circ g^{-1}$ est l'affinité d'axe $(0, \bar{f})$ de rapport $a' \times \frac{1}{a} = \frac{a'}{a}$.

6) a) on sait que $Rz' = -iz$ et celle de δ : $z' = \bar{z}$

$$\text{ROS: } z' = -i\bar{z} \Rightarrow \begin{cases} u' = -y \\ y' = -x \end{cases}$$

$$M(x, y) \in (f_a) \Rightarrow y = f_a(x)$$

$$-x' = f_a(-y') \Rightarrow y' = f_a(x')$$

l'équation cartésienne de ROS(f_a) est $y = f_a(x)$.

$$\text{B/2) } \int_0^{\frac{\pi}{2}} \frac{dx}{\cos x} = \ln c \Rightarrow \int_0^{\frac{\pi}{2}} \frac{dx}{\cos x} = [g(u)]_0^{\frac{\pi}{2}}$$

$$= f_1(\sin \frac{\pi}{2}) - f_1(\sin 0)$$

$$\int_0^{\frac{\pi}{6}} \frac{1}{\cos x} dx = f_1\left(\frac{1}{2}\right) = \frac{1}{2} \ln\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) = \ln\sqrt{3}$$

$$\Rightarrow C = \sqrt{3}.$$

3) a) $\forall x \in [0; \frac{\pi}{6}] \quad \sin x > 0$
 $\cos x > 0$

$$\frac{(\sin x)^{2n}}{\cos x} > 0 \Rightarrow I_n > 0.$$

b) $I_{n+1} - I_n = \int_0^{\frac{\pi}{6}} \frac{(\sin x)^{2n+2}}{\cos x} dx - \int_0^{\frac{\pi}{6}} \frac{(\sin x)^{2n}}{\cos x} dx$
 $= \int_0^{\frac{\pi}{6}} \frac{(\sin^2 x - 1)(\sin x)^{2n}}{\cos x} dx$

$$I_{n+1} - I_n = - \int_0^{\frac{\pi}{6}} \frac{\cos x (\sin x)^{2n}}{\cos x} dx$$

or $\cos x (\sin x)^{2n} > 0$
 $\forall x \in [0; \frac{\pi}{6}]$

$$I_{n+1} - I_n \leq 0. \quad (I_n \text{ est décroissante.})$$

c) $\forall x \in [0; \frac{\pi}{6}] \Rightarrow 0 \leq \sin x \leq \frac{1}{2}$

$$0 \leq (\sin x)^{2n} \leq \frac{1}{2^{2n}}$$

$$0 \leq \frac{(\sin x)^{2n}}{\cos x} \leq \frac{1}{4^n} \times \frac{1}{\cos x}$$

$$0 \leq I_n \leq \frac{1}{4^n} \int_0^{\frac{\pi}{6}} \frac{1}{\cos x} dx = \frac{\ln\sqrt{3}}{4^n}$$

C/1) $S_n(x) = 1 + \sum_{p=1}^{n-1} (\sin x)^{2p}$
 $= 1 + \sin^2 x \left(\frac{1 - (\sin x)^{2n-2}}{1 - \sin^2 x} \right)$

$$= \frac{1 - (\sin x)^{2n}}{1 - \sin^2 x}$$

$$S_n(x) = \frac{1 - (\sin x)^{2n}}{\cos^2 x}$$

2) $f_n(x) = \sum_{p=1}^n (\sin x)^{2p-2} \cdot \cos x$
 $= \cos x \sum_{p=1}^n (\sin x)^{2p}$

$$f_n'(x) = \frac{\cos x}{\sin^2 x} \cdot \left(\sin^2 x \cdot \frac{1 - (\sin x)^{2n}}{1 - \sin^2 x} \right)$$

$$= \cos x \cdot \frac{1 - (\sin x)^{2n}}{\cos^2 x}$$

$$f_n'(x) = \frac{1 - (\sin x)^{2n}}{\cos x}.$$

3) $[f_n(x)]_{0}^{\frac{\pi}{6}} = \int_0^{\frac{\pi}{6}} \frac{dx}{\cos x} - \int_0^{\frac{\pi}{6}} \frac{(\sin x)^{2n}}{\cos x} dx$

$$f\left(\frac{\pi}{6}\right) - f(0) = \ln\sqrt{3} - I_n.$$

4) $\lim_{n \rightarrow \infty} I_n = \ln\sqrt{3}.$

Exercice n° 135

1) a) $f_a(1) = 0; f_a(a) = 1$ et $f_a(a^n) = n$

b) $f_a(xy) = f_a(x) + f_a(y)$

$\Rightarrow f_a(xy) = \frac{\ln(xy)}{\ln a} = \frac{\ln x}{\ln a} + \frac{\ln y}{\ln a}$

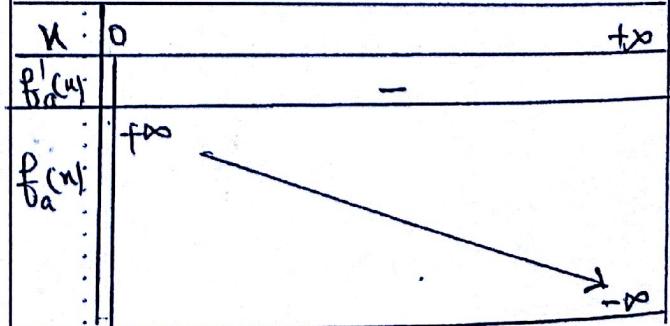
$\Rightarrow f_a\left(\frac{x}{y}\right) = \frac{\ln(x/y)}{\ln a} = \frac{\ln x - \ln y}{\ln a}$

$\Rightarrow f_a(x^n) = \frac{\ln x^n}{\ln a} = n \frac{\ln x}{\ln a}$

$\Rightarrow f_a(\sqrt[n]{x}) = \frac{\ln \sqrt[n]{x}}{\ln a} = \frac{1}{n} \frac{\ln x}{\ln a}$

c) $f_a(b) = \frac{\ln b}{\ln a} = \frac{1}{\ln a} \cdot \frac{\ln x}{\ln b} = f_a(b) \cdot f_b(x)$

2) a) $0 < a < 1, \quad f_a'(x) = \frac{1}{x \ln a}$



u	0		
$f'_a(u)$		+	$+\infty$
$f_a(u)$	$-\infty$		$+\infty$

Corrigés

$$m = -1 \quad f(u) = \ln \left| -\frac{u+1}{u-1} \right| = 0 \quad u \neq \pm 1$$

$$m = 1 \quad f(u) = \ln \left| \frac{u+1}{u-1} \right| = 0 \quad u \neq \pm 1$$

$$2) a) D_m = \mathbb{R} - \left\{ -\frac{1}{m}, -m \right\}$$

$$b) f_m(1) = \ln \left| \frac{m+1}{m-1} \right| = 0 \quad \text{pour } m \neq -1$$

$$f_m(-1) = \ln \left| \frac{-m+1}{m-1} \right| = \ln |-1| = 0 \quad m \neq 1$$

Toutes les courbes (f_m) à l'exception de (f_{-1}) et (f_1) passent par deux points $A(-1; 0)$ et $B(1; 0)$

$$3) a) f_{\frac{1}{m}}(x) = \ln \left| \frac{\frac{1}{m}x+1}{x+\frac{1}{m}} \right| = -\ln \left| \frac{mx+1}{x+m} \right|$$

$$f_{\frac{1}{m}}(x) = -f_m(x)$$

les courbes (f_m) et $(f_{1/m})$ sont symétriques par rapport à l'axe (Ox) .

b) les courbes (f_m) et (f_{-m}) sont symétriques par rapport à l'axe (Oy) .

$$c) m > 1 \Rightarrow \begin{cases} \frac{1}{m} \in]0; 1[\\ -\frac{1}{m} \in]-1; 0[\text{ et} \\ -m \in]-\infty, -1[\end{cases} \quad \begin{cases} f_{\frac{1}{m}} = S_{Ox}(f_m) \\ f_{-m} = S_{Oy}(f_m) \end{cases}$$

Il suffit donc d'étudier f_m et tracer (f_m) pour $m > 1$ pour obtenir toutes les cs (f_m)

$$4) m > 1$$

$$a) D_m = \mathbb{R} - \left\{ -m, -\frac{1}{m} \right\}$$

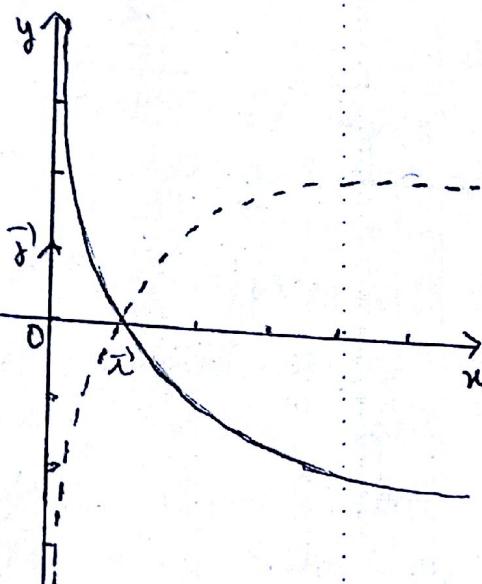
$$f'_m(x) = \frac{m^2-1}{(x+m)(mx+1)}$$

$m^2-1 > 0$ donc $f'_m(x) > 0$ donc le signe de $(x+m)(mx+1)$.

$$c) f_{\frac{1}{a}}(u) = \frac{eu}{\ln \frac{1}{a}} = -f_a(u)$$

(f_a) et $(f_{1/a})$ sont symétriques par rapport à l'axe des abscisses.

d)



Exercice n° 137

$$1) \text{ si } m = 0 \quad D_f = \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[$$

$$f'_0(x) = -\frac{1}{x}$$

u	$-\infty$	0	$+\infty$
$f'_0(x)$	+	-	$+\infty$
$f_0(x)$	$-\infty$		$+\infty$

$$4) m > 1$$

$$a) D_m = \mathbb{R} - \left\{ -m, -\frac{1}{m} \right\}$$

$$f'_m(x) = \frac{m^2-1}{(x+m)(mx+1)}$$

$m^2-1 > 0$ donc $f'_m(x) > 0$ donc le signe de $(x+m)(mx+1)$.

cas n pair				
x	$-\infty$	$-n$	$-\frac{1}{n}$	$+\infty$
$f'_n(x)$	+	-	+	
$f''_n(x)$	$\lim_{x \rightarrow -\infty} +\infty$	$\lim_{x \rightarrow -n} +\infty$	$\lim_{x \rightarrow -\frac{1}{n}} -\infty$	$\lim_{x \rightarrow +\infty} +\infty$

b) $f_2(x) = \ln 2 \Rightarrow \frac{2x+1}{x+2} = 2 \text{ impossible}$
 $\frac{2x+1}{x+2} = -2$
 $2x+1 = -2x-4 \Rightarrow x = -\frac{5}{4}$
 $\text{SL} \left(-\frac{5}{4}, \ln 2 \right).$

$A(a; b)$ est un centre de symétrie de (f_2) si et seulement si $f_2(2a-x) + f_2(x) = 2b$

$$f_2(2(-\frac{5}{4}) - x) = f_2(-\frac{5}{2} - x) = \ln 4 + \ln \frac{x+2}{2x+1}$$

Exercice n° 138

A/1) On sait que $\lim_{t \rightarrow +\infty} t e^{-t} = 0$
 posons $u = \frac{t}{p} \Rightarrow t = p x u, x = -\ln u$
 $\lim_{u \rightarrow 0} u(-\ln u)^p = \lim_{x \rightarrow +\infty} (-x^p) e^{-x} = 0$
 3) $\lim_{x \rightarrow 0} \frac{f_n(x) - f_n(0)}{x} = 0 = f'_n(0).$

B/1) $\forall x \in [0; 1], f'_1(x) = x(1+2\ln x)$.
 $\forall n \in [0; e^{\frac{1}{2}}[f'_1$ est décroissante
 $\forall n \in]e^{\frac{1}{2}}, 1] f'_1$ est croissante et admet un minimum local au point $e^{\frac{1}{2}}$.

2) a) $-\frac{n}{2} < 0 \quad \forall n \geq 1 \Rightarrow e^{-\frac{n}{2}} < e^0$
 d'où $0 < e^{-\frac{n}{2}} < 1 \quad \forall n \geq 1$.
 b) sur $[0; 1], \ln x + \frac{n}{2} \leq 0 \Rightarrow S = [0; e^{\frac{n}{2}}]$
 d'où $1 \in S$.

cas n pair		
x	0	$e^{-\frac{n}{2}}$
$f'_n(x)$	+	-
$f''_n(x)$	$\lim_{x \rightarrow 0} 0$	$\lim_{x \rightarrow e^{-\frac{n}{2}}} \left(\frac{-n}{2e} \right)^n$

2^e cas : n impair

cas n impair		
x	0	$e^{-\frac{n}{2}}$
$f'_n(x)$	-	+
$f''_n(x)$	0	$\lim_{x \rightarrow e^{-\frac{n}{2}}} \left(-\frac{1}{2e} \right)^n$

4) pour $n \neq 0$ $f_n(0) = 0$ et $f_n(1) = 0$
 Toutes les courbes (f_n) passent par deux points $O(0; 0)$ et $A(1; 0)$

C/1) b) $F(t) = L_n - I_n(t)$

$$F(0) = L_n - I_n(0) = L_n - L_n = 0$$

$$F(t) = \int_0^1 f_n(x) dx - \int_t^1 f_n(x) dx = f_n(t).$$

3) a) $\frac{x^3}{3}$ et $\frac{x^3}{9}$ sont continues et dérivables sur \mathbb{R} donc sur $[0; 1]$.
 $\ln x$ est continue et dérivable sur $[0; +\infty[$ donc sur $[0; 1]$. On en déduit donc F est dérivable sur $[0; 1]$ et

$$F'(x) = x^2 \ln x.$$

$$4) \text{ b) } I_{n+1}(t) = \int_t^1 f_{n+1}(x) dx$$

$$u = (\ln x)^{n+1} \quad u' = \frac{n+1}{x} (\ln x)^n$$

$$v' = x^2 \quad v = \frac{1}{3} x^3$$

$$I_{n+1}(t) = U_{n+1}(t) - \frac{n+1}{3} I_n(t).$$

$$c) I_{n+1}(0) = U_{n+1}(0) - \frac{n+1}{3} I_n(0).$$

$$\text{d'où } I_{n+1} = -\frac{n+1}{3} I_n$$

$$cl) \forall n \in \mathbb{N}^*, L_n = \frac{(-1)^n n!}{3^{n+1}}$$

$$L_1 = -\frac{1}{3} \text{ Vraie. Supposons que}$$

$L_n = \frac{(-1)^n n!}{3^{n+1}}$ et montrons qu'elle reste vraie à l'ordre $n+1$.

$$L_{n+1} = -\frac{(n+1)}{3} L_n = -\frac{(-1)^n n!}{3^{n+1}} \times \frac{n+1}{3} = (-1)^{n+1} \times \frac{(n+1)!}{3^{n+2}}$$

d'où $\forall n \in \mathbb{N}^*$

$$L_n = \frac{(-1)^n}{3^{n+1}}$$

$$e) A = \frac{n!}{3^{n+1}} \times u \cdot q.$$

Exercice n° 139

$$A/1) h(x) = \ln(1+x) \text{ sur } a; h(0) = 0$$

$$\lim_{x \rightarrow 0} \frac{h(1+x)}{n} = \lim_{x \rightarrow 0} \frac{\ln(1+x) - h(0)}{n} = h'(0)$$

$$\text{or } h'(x) = \frac{1}{1+x} \Rightarrow h'(0) = 1$$

$$\text{d'où } \lim_{n \rightarrow 0} \frac{\ln(1+x)}{n} = 1$$

$$2) a) x \begin{cases} \rightarrow +\infty \\ \rightarrow 0 \end{cases}$$

$$\lim_{x \rightarrow +\infty} x \ln\left(1 + \frac{1}{x}\right) = \lim_{x \rightarrow 0} \frac{\ln(1+x)}{x} = 1$$

$$b) x \rightarrow \left(1 + \frac{1}{n}\right)^n; a = e^{x \ln a}$$

$$\lim_{x \rightarrow +\infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \rightarrow +\infty} e^{x \ln\left(1 + \frac{1}{n}\right)} = e$$

$$3) a) f'_n(x) = x^{n-1} [n - (n+1)x]$$

$$f'_n(x) = 0 \Rightarrow x = \frac{n}{n+1}$$

Signe de $f'_n(x)$.

comme

1^{er} cas: n pair

n	$-\infty$	0	$\frac{n}{n+1}$	$+\infty$
$f'_n(n)$	-	0	+	-
$f'_n(x)$	$+\infty$	0	$\nearrow f\left(\frac{n}{n+1}\right)$	$-\infty$

2^e cas: n est impair

n	$-\infty$	0	$\frac{n}{n+1}$	$+\infty$
$f'_n(n)$	+	0	+	-
$f'_n(x)$	$-\infty$	0	\nearrow	$-\infty$

$$4) f'_n(0) = 0 \text{ pour } n \neq 0$$

$$f'_n(1) = 0 \quad \forall n \in \mathbb{N}$$

Donc toutes les courbes (f_n) sauf (f_0) passent par deux points fixes $O(0; 0)$ et $A(1; 0)$ et admettent en ces points la même tangente.

$$B/1) g\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right) \\ = \left(\frac{n}{n+1}\right)^n \left(\frac{1}{n+1}\right) = \left(\frac{1}{1+\frac{1}{n}}\right)^n \times \left(\frac{1}{n+1}\right)$$

$$3) \lim_{n \rightarrow +\infty} M_n = 0 \text{ car } \lim_{n \rightarrow +\infty} \frac{1}{n+1} = 0 \\ \lim_{n \rightarrow +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$I_n = \int_0^1 g_n(x) dx = \int_0^1 (x^n - x^{n+1}) dx$$

$$I_n = \left[\frac{1}{n+1} x^{n+1} - \frac{1}{n+2} x^{n+2} \right]_0^1 = \frac{1}{(n+1)(n+2)}$$

$$4) a) S_n(x) = g_0 + g_1(x) + \dots + g_n(x)$$

$$S_n(x) = g_0(x) \times \frac{1 - x^{n+1}}{1 - x} = 1 - x^{n+1}$$

Pour $x=0$ $S_n(0)=1$

et $\lim_{n \rightarrow +\infty} S_n(x) = 1$.

Pour $x=1$ $\lim_{n \rightarrow +\infty} S_n(x) = 0$

Pour $0 < x < 1$ $\lim_{n \rightarrow +\infty} S_n(x) = 1$.

$$b) J_n = \int_0^1 S_n(x) dx = \frac{n+1}{n+2}$$

$$J_n = I_0 + I_1 + I_2 + \dots + I_n$$

$$P_n = \sum_{i=0}^n \frac{1}{(i+1)(i+2)} = \sum_{i=0}^n I_n = \int_0^1 S_n(u) du$$

$$P_n = J_n$$

$$c) \lim_{n \rightarrow +\infty} \int_0^1 S_n(x) dx = \int_0^1 \lim_{n \rightarrow +\infty} S_n(x) dx$$

Exercice n° 141

A/ Cette partie, n'étant qu'une application directe du cours, est laissée aux bons soins de l'élève

$$B/1) \because f'(x) = 2x(1 - e^{x-1})$$

x	$-\infty$	0	1	$+\infty$
$f'(x)$	-	0	+	-
$f(x)$	$+\infty$	$\frac{2}{e}$	1	$-\infty$

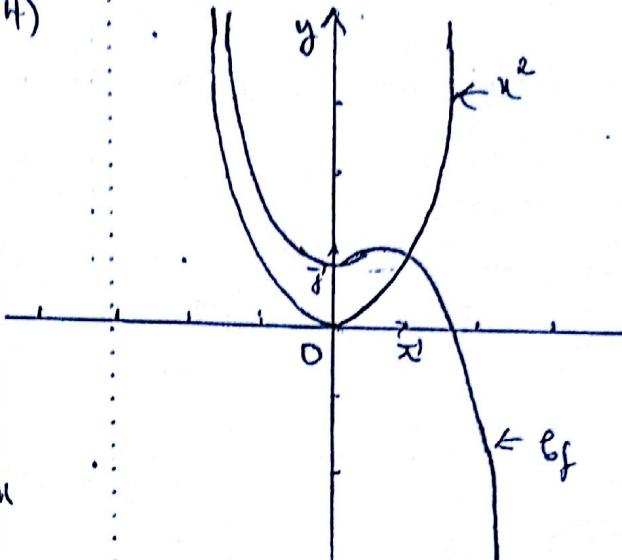
2) $\forall n \in [1; +\infty[$, f est continue et décroissante donc définie une bijection de $[1; +\infty[$ vers $]-\infty; 1]$. Or $0 \in]-\infty; 1]$, donc $f(x)=0$ admet une solution unique $x \in [1; +\infty[$.

$$3) f(x) - n^2 = -2(x-1)e^{x-1}$$

$$\forall n \in [1; +\infty[\quad f(x) - n^2 \leq 0$$

$$\forall n \in]-\infty; 1] \quad f(x) - n^2 > 0$$

4)



$$C/1) A(a) = \int_a^1 (f(x) - x^2) dx = \int_a^1 -2(x-1)e^{x-1} - x^2 dx$$

$$u = 2(x-1) \quad u' = -2$$

$$v = e^{u-1} \quad v' = e^{u-1}$$

$$A(a) = [-2(x-1)e^{x-1}]_a^1 + 2 \int_a^1 e^{x-1} dx$$

$$\text{d'où } A(a) = 2(a-1)e^{a-1} - 2e^{a-1} + 2 \quad (u.a)$$

$$2) A(0) = 2 - \frac{4}{e}$$

$$3) \lim_{a \rightarrow +\infty} A(a) = 2$$

D/1) Soit E l'événement « on atteint un point du Carré OIKJ » et F « on atteint un point du domaine D ».

$$\text{D'où } P(E) = \frac{1}{2} \text{ et } P(F/E) = A(0)$$

$$P(F \cap E) = P(F) = P(E) \times P(F/E) = \frac{1}{2} A(0)$$

$$P(F) = 1 - \frac{2}{e}$$

2) a) La probabilité de ne pas atteindre D à chaque déroulement est $\left[1 - \left(1 - \frac{2}{e}\right)\right]^n = \left(\frac{2}{e}\right)^n \Rightarrow P_n = 1 - \left(\frac{2}{e}\right)^n$

$$b) P_n \geq 0,99 \Rightarrow 1 - \left(\frac{2}{e}\right)^n \geq 0,99$$

$$n > \frac{\ln(0,01)}{\ln(\frac{2}{e})} \Rightarrow n > 15,007$$

Corrigés

$$n \geq 16.$$

Exercice n° 142

A/1) $D_{f_m} = \{x \in \mathbb{R}, x^2 - (m+3)x + 3m+1 > 0\}$

Posons $x^2 - (m+3)x + 3m+1 = 0$

$$\Delta = (m-1)(m-5)$$

Si $m \in]1; 5[$, $\Delta < 0 \Rightarrow D_{f_m} = \mathbb{R}$

Si $m \in]-\infty; 1] \cup]5; +\infty[$, $\Delta > 0$

$$x_1 = \frac{m+3-\sqrt{\Delta}}{2} \text{ et } x_2 = \frac{m+3+\sqrt{\Delta}}{2}$$

$$D_{f_m} =]-\infty; x_1] \cup]x_2; +\infty[$$

Si $m=1$ $D_{f_1} =]-\infty, 2] \cup]2; +\infty[$

Si $m=5$ $D_{f_5} =]-\infty, 4] \cup]4; +\infty[$

2) Soit $M(x; y)$ un point du plan $M \in (f_m) \Leftrightarrow y = \ln(x^2 - (m+3)x + 3m+1)$

$$(-m+3)m + (x^2 - 3x - e^y + 1) = 0$$

$$\begin{cases} x=3 \\ x^2 - 3x - e^y + 1 = 0 \end{cases} \Rightarrow y=0$$

Le point $A(3; 0)$ est commun à toutes courbes (f_m) .

3) Soit $M(a; b)$ un point distinct de A . On a alors $(a; b) \neq (3; 0)$

$$M \in (f_m) \Rightarrow (a-3)m = a^2 - 3a - e^b + 1$$

$$m = \frac{a^2 - 3a - e^b + 1}{a-3}$$

hors que $M \neq A$, il y'a au plus une courbe (f_m) qui passe par M .

4) $f_m(x) = 0 \Rightarrow x^2 - (m+3)x + 3m = 0$
 $\Delta = (m-3)^2$

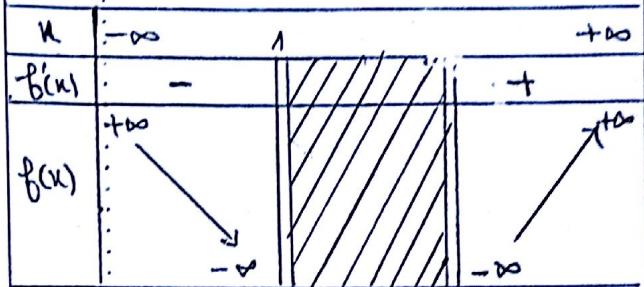
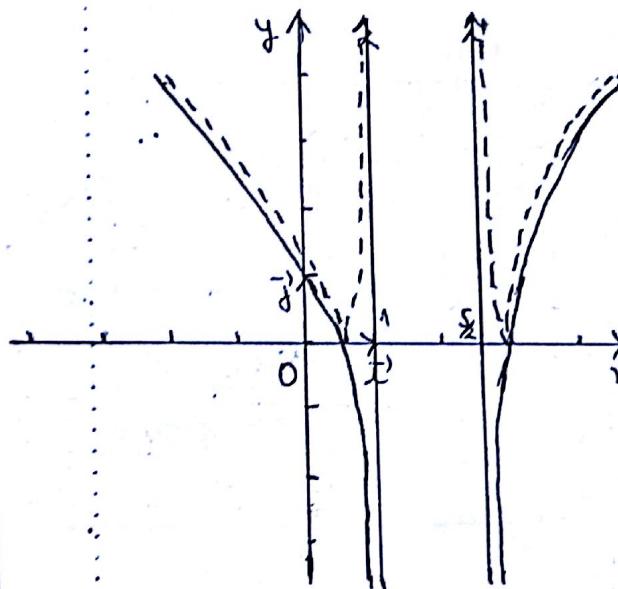
Si $m=3$, on a un seul point d'intersection $A(3; 0)$

Si $m \neq 3$, $\Delta > 0$, $x_1 = 3$ et $x_2 = m$

B/1) $f_{1/2}(x) = \ln(x^2 - \frac{7}{2}x + \frac{5}{2})$

$D_{f_{1/2}} =]-\infty, 1] \cup]5; +\infty[$

$$f'_{1/2}(x) = \frac{2x - \frac{7}{2}}{x^2 - \frac{7}{2}x + \frac{5}{2}}$$



2) a) $D_g = D_{f_{1/2}} \Rightarrow g(x) = \begin{cases} f_{1/2}(x) & \text{si } x \in D_{f_{1/2}} \cap]0, +\infty[\\ -f_{1/2}(x) & \text{si } x \in D_{f_{1/2}} \cap]-\infty, 0[\end{cases}$

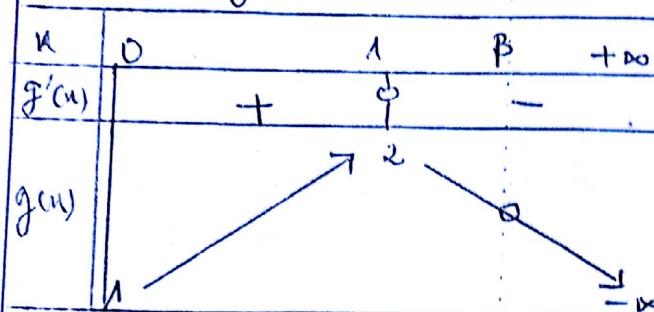
$$f_g = (f_{1/2})_{y>0} \text{ et } (f_{1/2})_{y \leq 0}.$$

3) a) $\frac{4x^2 - 7x}{2x^2 - 7x + 5} = 2 + \frac{1}{x-1} + \frac{5}{2x-5}$

b) $A = \left(-\frac{5}{2} - \frac{17}{2} \ln 2 + \frac{21}{4} \ln 7\right) \cdot u \cdot a$

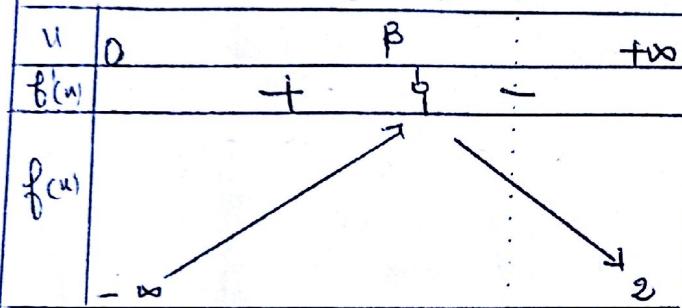
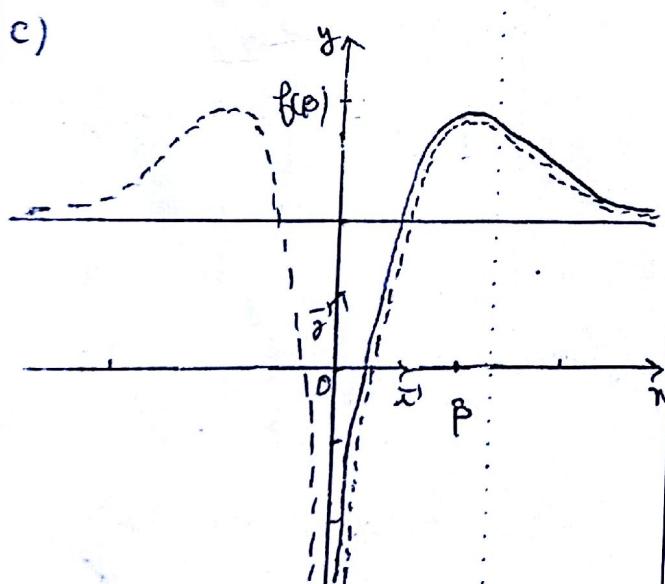
Exercice n° 143

A/ $g'(x) = -\ln x$.



$\forall x \in]0; \beta[\ g'(x) > 0$
 $\forall x \in]\beta; +\infty[\ g'(x) < 0 \quad \beta \in]3,5; 3,7[$

B/ $f'(x) = \frac{g(x)}{x(1+x)^2}$



$F(x) = f(1/x)$

$(\Gamma) = (E)_{x>0} \cup S_{0,1} \cup (C)_{x>0}$

3) a) $I(t) = \int_1^t [f(x) - 2] dx$

$I(t)$ représente l'aire, en unité d'aire, du domaine plan limité par la courbe (f) , la droite (D) et les droites d'équations $x=1$ et $x=t$

b) $J(t) = \int_1^t \frac{\ln x}{x} dx = \left[\frac{1}{2} (\ln x)^2 \right]_1^t$

c) $u = \ln x \quad u' = \frac{1}{x}$
 $v' = \frac{1}{x^2} \quad v(x) = -\frac{1}{x}$

$K(t) = \left[-\frac{1}{x} \ln x - \frac{1}{x} \right]_1^t$

$K(1) = 0; \ K'(t) = \frac{\ln t}{t^2} \quad K'(t) > 0$

donc K est strictement croissante sur $[1; +\infty[$ et $\lim_{t \rightarrow +\infty} K(t) = 1$ donc

d) $t \in [1; +\infty[\quad 0 \leq K(t) \leq 1$

d) $\frac{1}{x} - \frac{1}{x+1} - \frac{1}{x^2} = \frac{-1}{x^2(x+1)} \leq 0 \text{ car } x \geq 1$

$\frac{1}{x} - \frac{1}{x+1} \leq \frac{1}{x^2} \quad (1) \text{ et } \frac{1}{x} - \frac{1}{x+1} = \frac{1}{(x+1)x} \geq 0$

$\frac{1}{x} - \frac{1}{x+1} \geq 0 \quad (2) \text{ d'où } 0 \leq \frac{1}{x} - \frac{1}{x+1} \leq \frac{1}{x^2}$

En intégrant on a: $0 \leq J(t) - I(t) \leq K(t)$

e) De ce qui précède on peut écrire:

$0 \leq \frac{I(t)}{(ln t)^2} - \frac{J(t)}{(ln t)^2} \leq \frac{K(t)}{(ln t)^2}$

$0 \leq \frac{1}{2} - \frac{I(t)}{(ln t)^2} \leq \frac{1}{(ln t)^2} - \frac{1}{t(ln t)^2} - \frac{1}{t ln t}$

$\lim_{t \rightarrow +\infty} \frac{1}{(ln t)^2} - \frac{1}{t(ln t)^2} - \frac{1}{t ln t} = 0 \text{ donc}$

$\lim_{t \rightarrow +\infty} \frac{I(t)}{(ln t)^2} = \frac{1}{2}$

D) a) $f'(x) = f'(1/x) - 1$

$\forall x \in]\beta; +\infty[\ f'(x) < 0 \Rightarrow f'(x) < 0$

$$b) f''(u) = \frac{u(1+u)^2 g'(u) - (3u^2 + 4u + 1)g(u)}{u^2 (1+u)^4}$$

Corrigés

$$u = \frac{\pi}{4} ; u = \frac{5\pi}{4}$$

$$S = [0; \frac{\pi}{4}] \cup [\frac{5\pi}{4}; 2\pi]$$

$f'(u)$ est du signe de $\cos(u + \frac{\pi}{4})$.

u	0	$\frac{\pi}{4}$	$\frac{5\pi}{4}$	2π
$f'(u)$	+	0	-	0
$f(u)$	$\frac{\sqrt{2}}{2} e^{-\frac{\pi}{4}}$	0	$-\frac{\sqrt{2}}{2} e^{-\frac{5\pi}{4}}$	0

$g'(u) \leq 0$ $g(u) \geq 0 \Rightarrow f''(u) \leq 0$ f' est alors décroissante sur $[1; \beta]$.
 $1 \leq u \leq \beta \Rightarrow f'(\beta) \leq f'(u) \leq f'(1)$
 $f'(\beta) = 0$ et $f'(1) = \frac{g(1)}{4}$ d'où $0 \leq f'(u) \leq \frac{g(1)}{4}$
 $-1 \leq f'(u) \leq -\frac{1}{2} \Rightarrow f'(u) < 0$ donc f est strictement décroissante sur $[1; \beta]$

E) D'après 4) b) f est continue et strictement décroissante sur $[1; +\infty]$ dont définit une bijection de $[1; +\infty]$ sur $f([1; +\infty]) = [-\infty; 1]$. Or $0 \in [-\infty; 1]$ donc $f(x) = 0$ admet une unique solution x . $f(x) = 0 \Rightarrow f(x) = x$.

b) f est croissante sur $[2; 3]$

$$2 \leq u \leq 3 \Rightarrow f(2) \leq f(u) \leq f(3)$$

c) f' est décroissante sur $[2; 3]$

$$f'(3) \leq f'(u) \leq f'(2) \Rightarrow 0 \leq f'(u) \leq \frac{1}{9}$$

d) De tout ce qui précède :

$\forall u \in [2; 3]$, $f(u) \in [2; 3]$ et $\alpha \in [2; 3]$
 f est dérivable sur $[2; 3]$ et $0 \leq f'(u) \leq \frac{1}{9}$

$$|f'(u)| \leq \frac{1}{9}$$

D'après T.I.A.F $\Rightarrow |f(u) - f(\alpha)| \leq \frac{1}{9}(u - \alpha)$

F/ cette partie est laissé à l'appréciation de l'élève.

Exercice n° 145

$$A/a) f'(x) = e^{-x} (\cos x - \sin x) \\ = \sqrt{2} e^{-x} \left(\frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \sin x \right)$$

$$f'(x) = \sqrt{2} e^{-x} \cos \left(x + \frac{\pi}{4} \right)$$

$$b) \text{ sur } [0; 2\pi], \cos \left(x + \frac{\pi}{4} \right) = 0$$

Tangente en $(0; 0)$: $f'(0) = 1 = f(1)$; $y = x$

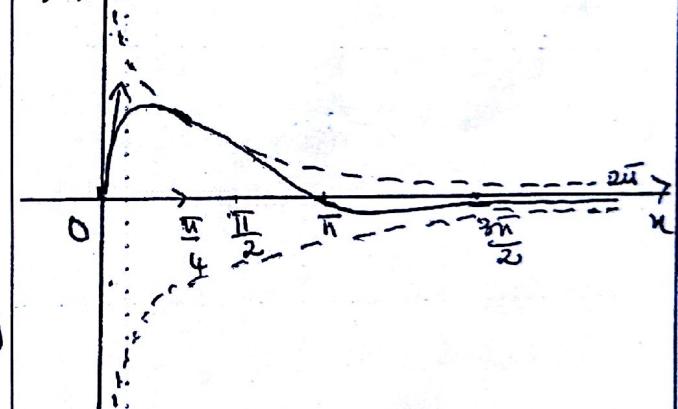
Tangente en $(2\pi; 0)$ $f'(2\pi) = e^{-2\pi}$

$$y = e^{-2\pi} (x - 2\pi)$$

$$2) a) e^{-x} \sin x = -e^{-x} \Rightarrow x = \frac{\pi}{2}$$

$$e^{-x} \sin x = -e^{-x} \Rightarrow x = \frac{3\pi}{2}$$

c) y :



$$3) \left. \begin{array}{l} x' = x + 2\pi \\ y' = e^{-x} y \end{array} \right\} \left. \begin{array}{l} x = x' - 2\pi \\ y = e^{2\pi} y' \end{array} \right\}$$

$$M(x; y) \in (f) \Leftrightarrow y = e^{-x} \sin x \\ y' = e^{-x} \sin x'$$

$$M'(x'; y') \in (f')$$

$$C' = C \text{ ou } \phi(C) = C.$$

B/ 1) a) La solution cherchée est

$$f(x) = e^{-x} \sin x$$

b) $g'' + 2g' + 2g = 0$

$$g = -\frac{1}{2}(2g' + g'')$$

$G = -\frac{1}{2}(2g + g')$ où G étant une primitive de g . f étant une fonction particulière avec $a=0$ et $b=1$, nous obtenons une primitive F_1 de f en posant $F_1 = -\frac{1}{2}(kf + f')$

$$F_1(x) = -\frac{1}{2}e^{-x}(\sin x + \cos x)$$

$$F(x) = [F_1(x)]_0^x = -\frac{1}{2}e^{-x}(\sin x + \cos x) + \frac{1}{2}$$

$$2) S_n = \int_0^{\pi} f(x) dx + \int_{\pi}^{2\pi} f(x) dx + \dots + \int_{n\pi}^{(n+1)\pi} f(x) dx$$

$$= \int_0^{(n+1)\pi} f(x) dx = F((n+1)\pi)$$

$$S_n = -\frac{1}{2}e^{-(n+1)\pi}(\sin((n+1)\pi) + \cos((n+1)\pi)) + \frac{1}{2}$$

$$\lim_{n \rightarrow +\infty} S_n = \frac{1}{2}.$$

3) a) $B_k = F((k+1)\pi) - F(k\pi)$

$$B_k = -\frac{1}{2}e^{-(k+1)\pi}(\sin((k+1)\pi) + \cos((k+1)\pi)) + \frac{1}{2}e^{-k\pi}(\sin k\pi + \cos k\pi)$$

$$= -\frac{1}{2}e^{-k\pi} \times e^{-\pi} \cos((k+1)\pi) + \frac{1}{2}e^{-k\pi} \cos k\pi$$

or $\cos((k+1)\pi) = -\cos k\pi$ d'où

$$B_k = \frac{1}{2}e^{-k\pi} \cos k\pi \times (1 + e^{-\pi})$$

b) $B_0 = \frac{1}{2}(1 + e^{-\pi}) \Rightarrow B_k = B_0 e^{-k\pi} \cos k\pi$,

or $\cos k\pi = (-1)^k \Rightarrow B_k = (-1)^k e^{-k\pi} B_0$.

c) $|(-1)^k| = 1 \Rightarrow T_n = |B_0| + e^{-\pi}|B_1| + \dots + e^{-n\pi}|B_0|$

$$T_n = |B_0| (1 + e^{-\pi} + e^{-2\pi} + \dots + e^{-n\pi})$$

$$T_n = |B_0| \times \frac{(1 - (e^{-\pi})^{n+1})}{1 - e^{-\pi}}$$

$$\lim_{n \rightarrow +\infty} e^{-\pi(n+1)} = 0 \Rightarrow \lim_{n \rightarrow +\infty} T_n = \frac{|B_0|}{1 - e^{-\pi}}$$

d) $S = \lim_{n \rightarrow +\infty} S_n = \frac{1}{2} \Rightarrow \frac{1}{S} = 2$.

$$T = \lim_{n \rightarrow +\infty} T_n = \frac{|B_0|}{1 - e^{-\pi}} \Rightarrow \frac{1}{T} = \frac{1}{|B_0|} = \frac{1 - e^{-\pi}}{|B_0|}$$

$$\frac{1}{S} + \frac{1}{T} = \frac{4}{1 + e^{-\pi}} = \frac{2}{\frac{1}{2}(1 + e^{-\pi})} = \frac{2}{|B_0|}$$

Exercice n° 147

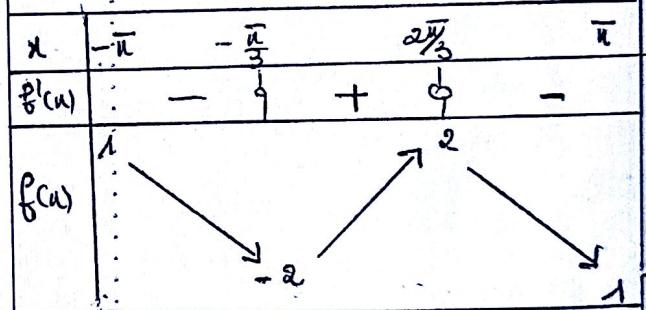
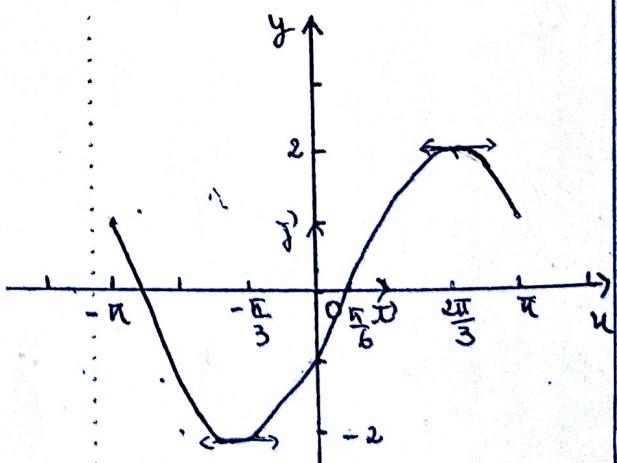
A/1) L'équation cartésienne de (E) est $x^2 + 1 = 0$ donc la solution générale (de E) est $y = p \cos x + q \sin x$ $(p, q) \in \mathbb{R}^2$.

$$\Psi_0(0) = 1 \Rightarrow \Psi_0(x) = -\cos x + \sqrt{3} \sin x$$

$$\Psi_0'(0) = \sqrt{3}$$

2) $f'(x) = 2 \cos(x - \frac{\pi}{6})$

$f'(x) = 0 \Rightarrow x = -\frac{\pi}{3}$ ou $x = \frac{2\pi}{3}$.



$B/(E_1)$ a pour solution $\Psi_1(x) = (n+1)e^{-x}$

Ex) a) $f_m'(x) = 1 - m e^{-x}$, $f_m''(x) = m(x-1) e^{-x}$ Corrigés

$m < 0$

x	$-\infty$	1	$+\infty$	x	$-\infty$	1	$+\infty$
$f_m''(x)$	+	0	-	$f_m''(x)$	-	0	+
$f_m'(x)$	$\frac{e-m}{e}$	1	$\frac{e-m}{e}$	$f_m'(x)$	$\frac{1}{e}$	$\frac{1}{e}$	$\frac{e-m}{e}$

b) 1^e cas: $m < 0$: $\frac{e-m}{e} > 0$ $f_m'(x) = 0$ admet une solution unique $\alpha \in]-\infty, 1[$
 $f_m'(\alpha) = 0$, $f_m'(0) = 1 \Rightarrow f_m'(\alpha) < f_m'(0)$
 $\alpha < 0$.

donc l'unique solution est telle que
 $\alpha < 0 < 1$

2^e cas: $m > 0$: si $m \in]0, e[$ $\frac{e-m}{e} > 0$
si $m \in]e, +\infty[$ $\frac{e-m}{e} < 0$

$f_m'(x) = 0$ n'admet aucune solution
si $0 < m < e$.

si $m > e$ $\frac{e-m}{e} < 0$ $f_m'(x) = 0$ admet
deux solutions δ et β telles que
 $\delta \in]-\infty, 1[$ et $\beta \in]1, +\infty[$.

$f_m'(\delta) = 0 \quad \Rightarrow \quad f_m'(\delta) < f_m'(0)$
 $f_m'(0) = 1 \quad 0 < \delta$ car f_m' est
décroissante sur $]-\infty, 1[$, $0 < \delta < \beta$

c) De ce qui précède, nous pouvons
dégager les tableaux de signe
 $f_m'(x)$.

1^e cas: $m < 0$

x	$-\infty$	δ	$+\infty$
$f_m'(x)$	-	0	+

2^e cas: $0 < m < e$

x	$-\infty$	$+\infty$
$f_m'(x)$	-	+

3^e cas: $m > e$

x	$-\infty$	δ	β	$+\infty$
$f_m'(x)$	+	0	-	+

4^e cas: $m = e$

x	$-\infty$	1	$+\infty$
$f_m'(x)$	+	0	+

3^o) a) $f_m(-1) = 1 + me$

$-\frac{1}{e} < m < 0 \Rightarrow 0 < 1 + me < 1$ et $f_m'(x) = 0$
donc $f_m(x) < f_m(-1)$ car $\forall x \in]-1, 0[$,
 f_m est strictement croissante.

b) $-1 < x < 0 \Rightarrow f_m(-1) < f_m(x) < f_m(0)$
d'où $-1 < f_m(x) < 0$.

c) $U_1 = f_m(0) = m$.

$-\frac{1}{e} < m < 0 \Leftrightarrow -1 < U_1 < 0$; supposons
que la relation est vraie jusqu'au
rang n , montrons que elle est vraie
au rang $n+1$.

$-1 < U_n < 0 \Rightarrow -1 < f_m(U_n) < 0$
 $-1 < U_{n+1} < 0$ la
relation est vraie au rang $n+1$
donc $\forall n \in \mathbb{N}^*, -1 < U_n < 0$.

$U_n < U_{n-1} \Rightarrow f_m(U_n) < f_m(U_{n-1})$
 $U_{n+1} < U_n$ donc la
suite (U_n) est décroissante.

d) $-1 < U_n < 0$ alors (U_n) est convergente.

$\lim_{n \rightarrow +\infty} U_{n+1} = \lim_{n \rightarrow +\infty} U_n = l$ donc

$f_m(l) = l \Rightarrow l = l + m(l+1) e^{-l}$

$l+1=0 \Rightarrow l=-1$

d'où $\lim_{n \rightarrow +\infty} U_n = -1$.

Exercice n° 150

A/1) $\lim_{n \rightarrow +\infty} f(n) = \lim_{n \rightarrow +\infty} n e^{\frac{1}{n}} = 0$

$\lim_{x \rightarrow 0} f(x) = x \ln(1+x) = 0$.
alors f est continue en 0.

$\lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x - 0} = 0$
alors f est dérivable en 0.

2) a) $\forall x < 0$; $f'(x) = e^{\frac{1}{x}}(-\frac{1}{x^2} + 1) > 0$

b) $\lim_{x \rightarrow \infty} \frac{f(x)}{x} = +\infty$

b) Il y a 2 possibles $x = \frac{1}{t}$ ($x < 0$)

$$1+t < e^t < \frac{1}{1-t} \Rightarrow 1 + \frac{1}{x} < e^{\frac{1}{x}} < \frac{1}{1-\frac{1}{x}}$$

$$\frac{1}{x} \leq e^{\frac{1}{x}} - 1 \leq \frac{1}{x-1}$$

$$\frac{x}{x-1} \leq x(e^{\frac{1}{x}} - 1) \leq 1$$

$$\lim_{x \rightarrow -\infty} x e^{\frac{1}{x}} - x = 1.$$

$\lim_{x \rightarrow -\infty} f(x) - (x+1) = 0$ alors $y = x+1$

est asymptote oblique à $f(x)$ en $-\infty$.

c) D'après 3b) $x e^{\frac{1}{x}} - x \leq 1 \Rightarrow f(x) - y \leq 0$

alors $f(x)$ est en dessous de y .

4) $f(x) = y \Rightarrow x = 0$ et $e^{\frac{1}{x}} - 1 = 0$
or $x < 0$ ce qui est impossible donc

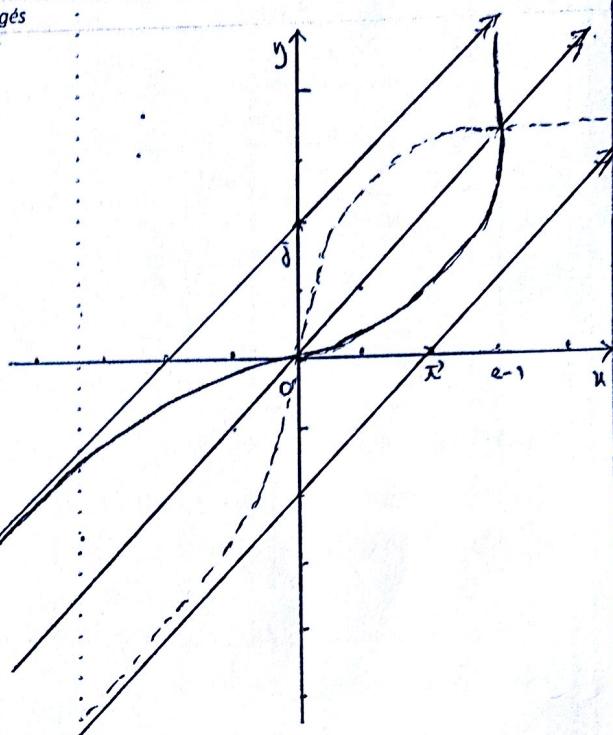
$\forall x < 0$; $(f) \cap (D) = \emptyset$.

$\forall x > 0 \Rightarrow f(x) = y \Rightarrow x = 0$ ou $x = e^{-1}$

$$(f) \cap (D) = \{0(0), A(e^{-1})\}$$

D'après tout ce qui précède nous pouvons établir le tableau de variation de f :

x	$-\infty$	0	$+\infty$
$f'(x)$	+	0	+
$f(x)$..	0	$\nearrow +\infty$



B/1) $\frac{x^2}{x+1} = \frac{ax^2 + (a+b)x + b+c}{x+1}$

$$a = 1; b = -1 \text{ et } c = 1$$

2) $\forall x > 0 \int f(x) dx = \int x \ln(1+x) dx$

$$u(x) = \ln(1+x) \quad u'(x) = \frac{1}{1+x}$$

$$v(x) = x \quad v'(x) = \frac{1}{2}x^2$$

$$F(x) = \frac{1}{2}(x^2 - 1) \ln(1+x) - \frac{1}{4}(x^2 - 2x)$$

3) $A = \int_0^{e^{-1}} (x - f(x)) dx = \frac{1}{4}e^2 - e + \frac{5}{4}$

C/1) f est continue et strictement croissante sur \mathbb{R} , donc elle admet une bijection de \mathbb{R} sur $f(\mathbb{R}) = \mathbb{R}$.

Donc f admet une bijection réciproque f^{-1} de \mathbb{R} sur \mathbb{R} .

3) L'aire B de la boucle délimitée par (f) et (f') est $B = 2A$

$$B = \frac{1}{2}e^2 - 2e + \frac{5}{2} \approx 0,75$$

PROBABILITES

Exercice n°1

$$\frac{21!}{18!} = \frac{21 \times 20 \times 19 \times 18!}{18!} = 7980$$

$$\frac{8! - 7!}{7!} = \frac{(8-1) \times 7!}{7!} = 7$$

$$\frac{(2n-1)!}{(2n+1)!} = \frac{(2n-1)!}{(2n+1)(2n)(2n-1)!} = \frac{1}{2n(2n+1)}$$

$$\frac{(n-1)!}{n!} = \frac{(n-1)!}{n(n-1)!} = \frac{1}{n}$$

$$\frac{(n-1)!}{n!} - \frac{n!}{(n+1)!} = \frac{1}{n^2+n}$$

Exercice n°2

2) a) $C_n^2 = 36 \Rightarrow \frac{n(n-1)}{2} = 36$
 $n^2 - n - 72 = 0 \Rightarrow n = 9$

b) $C_n^4 = C_n^3 \Rightarrow \frac{n!}{4!(n-4)!} = \frac{n!}{3!(n-3)!}$
 $\Rightarrow \frac{1}{4} = \frac{1}{n-3} \Rightarrow n = 4$

c) $n + \frac{n!}{2(n-2)!} + \frac{n!}{3(n-3)!} = \frac{7}{2}n$
 $n + \frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{6} = \frac{7}{2}n$
 $n^3 - 16n = 0 \Rightarrow n = 4$

3) $\begin{cases} C_x^y = C_x^{y+1} \\ 4C_x^y = 5C_x^{y-1} \end{cases}$

$$\begin{cases} \frac{x!}{y!(x-y)!} = \frac{x!}{(y+1)!(x-y-1)!} \\ \frac{4x!}{y!(x-y)!} = \frac{5x!}{(y-1)!(x-y+1)!} \end{cases}$$

$$\begin{cases} y!(x-y)(x-y-1)! = (y+1)y!(x-y-1)! \\ \frac{4}{y(y-1)!(y-x)!} = \frac{5}{(y-1)!(x-y+1)(x-y)!} \end{cases}$$

$$\begin{cases} x-2y=1 \\ 4x-9y=-4 \end{cases} \Rightarrow \begin{cases} x=17 \\ y=8 \end{cases}$$

Exercice n°3

Utiliser le triangle de Pascal pour développer.

Exercice n°4

- 1) \bar{A} : « les deux élèves sont des garçons »
- 2) \bar{B} : « la personne est un homme suisse »
- 3) \bar{C} : « Luc ne prend pas la viande ou de la glace »
- 4) \bar{D} : « Aucun des billets n'est gagnant »
- * \bar{E} : « Deux billets au moins sont gagnants ».

Exercice n°5

1) A_{15}^3 ; 2) 15^3

Exercice n°6

1) C_6^4 ; 2) $C_5^3 \times C_1^1$; 3) $C_4^3 \times C_2^1$

Exercice n°7

1) a) $C_6^9 \times C_{20}^3$; b) $C_{26}^5 - C_{20}^5$
2) 26^5

Exercice n°8

1) 10^6 ; 2) a) $(1 \times 4 \times 1) \times \frac{6!}{2!3!1!} = 60$
b) $(2^6 - 2) \times C_{10}^2 = 2790$
c) $(1 \times 9^3) \times \frac{6!}{3!3!1!} = 14580$

Exercice n°10

1) A_{20}^3 ; 2) $A_1^1 \times A_{19}^2$
 3) $(A_1^1 \times A_{19}^2) \times \frac{3!}{11 \cdot 2!} = 1026$

Exercice n°11

1) a) 10^3 ; b) $10^2 \times 5^1$
 c) $1 \times 10^2 + 1 \times 10^1 + 1^3 = 111$
 d) 1×10^2
 2) a) A_{10}^3 ; b) $A_5^2 \times A_5^1$
 c) $(A_1^1 \times A_{19}^2) \times \frac{3!}{11 \cdot 2!} = 216$

Exercice n°12

1) C_8^3 ; 2) $C_6^2 \times C_2^1$
 3) $C_6^1 \times C_2^2 + C_6^2 \times C_2^1 + C_6^3$
 4) $C_1^1 \times C_1^1 \times C_6^1$; 5) $(C_1^1 \times C_1^0 \times C_6^2) \times 2$

Exercice n°13

Une phrase est une permutation de l'ensemble des huit cartons. On peut donc former $8!$ phrases.

Exercice n°14

a) $\text{Card}(A \cup B) = \text{Card}A + \text{Card}B - \text{Card}A \cap B$
 $= 21400 + 24800$

b) $\text{Card}A \cup B = 21400 + 24800 - 41600$

Exercice n°15

1) C_{12}^4 ; 2) a) $C_5^4 + C_4^4$; b) C_5^4
 c) $C_3^3 \times C_2^1$; d) $C_2^2 \times C_3^1 \times C_2^1 + C_5^3 \times C_2^1 \times C_3^1$
 3) a) $C_5^1 \times C_3^1 \times C_2^1 \times C_1^1$; b) $C_8^3 \times C_3^2$

Exercice n°16

1) PPP, PPF, PFP, PFF, FPP, FPF, FFP, FFF
 2) a) $P(A) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
 b) $P(B) = 1 - P(A) = \frac{7}{8}$

Exercice n°18

1) $C_8^3 \times C_{24}^5$; 2) $C_8^6 \times C_{24}^2 + C_8^7 \times C_{24}^1 + C_8^8$
 3) $C_1^1 \times C_7^2 \times C_{24}^5$; 4) $C_8^3 \times C_8^2 \times C_8^3$

Exercice n°19

1) $C_4^3 \times C_{28}^2$; 2) $C_8^3 \times C_{24}^2$; 3) $(C_8^3 \times C_{24}^2) \times 2$
 4) $\text{card } S2 = C_{32}^5$; $P(A) = \frac{C_{32}^5 - C_{28}^5}{C_{32}^5}$
 5) $P(B) = \frac{C_4^1 \times C_7^1 \times C_{21}^3}{\text{card } S2}$

Exercice n°20

$\text{Card } S2 = C_{10}^3$
 1) $P(A) = \frac{C_4^2 \times C_6^1 + C_4^3}{120}$
 2) $P(B) = \frac{C_6^1 \times C_4^2 + C_4^3}{120}$
 3) $P(C) = \frac{C_4^3 + C_6^3}{120}$

Exercice n°21

	Cravate C	Pas de cravate	Total
Yeux Bleus	50	35	85
Yeux non Bleus	40	95	135
Total	120	130	250

1) $P(C) = \frac{120}{250}$; 2) $P(B \cap C) = \frac{\text{Card } B \cap C}{\text{Card } S2}$
 3) $P(B \cup C) = P(B) + P(C) - P(B \cap C)$
 $= \frac{85 + 120 - 50}{250}$

4) $P(\bar{B} \cap \bar{C}) = P(\bar{B} \cup \bar{C}) = 1 - P(B \cup C)$

Exercice n°22

	eur	App	cad	Total
He	18	(1)	3	22
Fe	(7)	1	6	14
Total	(25)	2	5	36

Exercice n° 23

$$\text{Card } S2 = C_{13}^3$$

$$1) P(A) = \frac{C_6^3}{286}; 2) P(B) = \frac{C_7^2 \times C_6^1}{286}$$

$$3) P(C) = \frac{C_6^1 \times C_7^2 + C_6^2 \times C_7^1 + C_6^3}{286}$$

$$4) P(D) = \frac{C_7^2 \times C_6^1 + C_7^1 \times C_6^2 + C_6^3}{286}$$

Exercice n° 24

$$\text{Card } S2 = C_{32}^5$$

$$1) P(A) = \frac{(C_4^0 \times C_4^1 \times C_4^1 \times C_4^1 \times C_{16}^0) \times 4}{201376}$$

$$2) P(B) = \frac{(C_4^2 \times C_4^2 \times C_4^1) \times 5}{201376}$$

$$3) P(C) = \frac{C_4^3 \times C_{28}^2}{201376}$$

$$4) P(D) = \frac{C_4^4 \times C_{28}^1}{201376}$$

5) Card E = 0 (on tire 5 cartes).

Exercice n° 25

$$P(A) = 0,65; P(B) = 0,51;$$

$$P(A \cap B) = 0,46$$

$$1) P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$2) P(\bar{A} \cup \bar{B}) = P(\bar{A} \cup \bar{B}) = 1 - P(A \cup B)$$

Exercice n° 26

$$1) C_{11}^4; 2) C_4^4 + C_5^1 \times C_4^1 \times C_2^2$$

Exercice n° 27

$$1) A_{20}^5 = 1.860.480$$

$$2) \text{Card } = A_8^2 \times A_{12}^3$$

$$b) \text{Card } B = (A_8^2 \times A_{12}^3) \times \frac{5!}{2!3!}$$

$$c) \text{Card } C = (A_8^2 \times A_{12}^3) \times \frac{5!}{2!3!} + (A_8^3 \times A_{12}^2) \times \frac{5!}{3!2!} \\ + (A_8^4 \times A_{12}^1) \times \frac{5!}{4!1!} + A_8^5$$

$$3) \text{Card } D = (A_6^2 \times A_{14}^3) \times \frac{5!}{2!3!}$$

$$4) \text{Card } E = (A_4^1 \times A_6^2 \times A_2^0 \times A_8^2) \times \frac{5!}{1!2!2!} \\ + (A_2^1 \times A_4^0 \times A_6^1 \times A_8^3) \times \frac{5!}{1!1!3!}$$

Exercice n° 28

$$P = \frac{1}{3}; P_k = C_3^k \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{3-k}$$

$$1) P_1 = C_3^1 \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^2 = 0,44$$

$$2) P_3 = C_3^3 \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^0 = 0,037$$

Exercice n° 29

$$P(S) = \frac{2}{3}; P(L) = \frac{3}{5}; P(S \cap L) = \frac{2}{5}$$

Exercice n° 30

$$P(G) = \frac{1}{2} \quad P(F) = \frac{1}{2}$$

$$P_k = C_2^k \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{2-k}$$

$$1) P(A) = C_2^1 \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) + C_2^2 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^0 = 0,75$$

$$2) P(B) = C_2^2 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right) = 0,25$$

$$3) P(C) = \frac{P(B)}{P(A)} = \frac{0,25}{0,75}$$

Exercice n° 31

si A désigne l'événement « la boule tirée est rouge » et B « la boule tirée est tachetée » alors la probabilité d'avoir une boule

sachant qu'elle est tachetée est :

$$P_B(A) = \frac{\text{Card } A \cap B}{\text{Card } B} = \frac{4}{7}$$

2) $A' \cap B'$ « une des deux boules est rouge et au moins une des deux boules est tachetée »; B' « les boules sont tachetées »

$$P_{B'}(A') = \frac{\text{Card } A' \cap B'}{\text{Card } B'} = \frac{44}{56}$$

3) A'' « la première boule tirée est tachetée » et B'' « la deuxième boule tirée est unie »

$$P(A'' \cap B'') = P(A'') \times P_{A''}(B'') \\ = \frac{7}{12} \times \frac{5}{11}$$

Exercice n° 32

$$1) 495; 2) 2000; 3) P = \frac{5 \times 2 + 1}{6^2}$$

Exercice n° 33

$$1) \text{Card } S_2 = C_6^3$$

$$P(A) = \frac{C_6^3 - C_3^3}{20} = 0,95$$

$$P(B) = \frac{C_3^2 \times C_3^1 + C_3^3}{20} = 0,5$$

$$P(C) = \frac{C_3^1 \times C_3^2 + C_3^2 \times C_3^1}{20} = 0,50$$

2) $A \cap B$: « Obtenir exactement une boule blanche et deux boules noires ».

$$\text{Card } A \cap B = C_3^1 \times C_3^2$$

Exercice n° 34

$$1) 4^{10} = 1048576$$

$$2) C_{10}^8 \times 3^2; 3) C_{10}^P \times 3^{10-P}$$

$$4) \sum_{P=0}^{10} C_{10}^P 3^{10-P} = 1.$$

Exercice n° 35

1) Etudier l'allemand

$$\text{Card } A = 60 \Rightarrow P(A) = \frac{60-2}{150} = \frac{29}{75}$$

Pratiquer le tennis

$$\text{Card } T = 70 \Rightarrow P(T) = \frac{13}{25}$$

$$A \cap T = 33 \Rightarrow P(A \cap T) = \frac{33}{150} = \frac{11}{50}$$

$$P(A \cap T) = P(A) \times P(T) = \frac{2}{5} \times \frac{13}{25} \neq P(A \cap T)$$

2) Etudier l'anglais

$$\text{Card } A = 90 \Rightarrow P(A) = \frac{90-3}{150} = \frac{3}{5}$$

Pratiquer la voile

$$\text{Card } V = 45 \Rightarrow P(V) = \frac{45}{150} = \frac{3}{10}$$

$$\text{Card } A \cap V = 27 \Rightarrow P(A \cap V) = \frac{9}{50}$$

$$P(A \cap V) = P(A) \times P(V) = \frac{3}{5} \times \frac{3}{10} = \frac{9}{50}$$

Exercice n° 36

$$1) a) A_{15}^4; b) A_{15}^5 \quad 2) a) C_{15}^4; b) C_{15}^5$$

Exercice n° 37

$$1) 6^4; 2) 6; 3) A_6^4; 4) C_4^2$$

Exercice n° 38

$$1) a) C_5^3 + C_4^3 + C_3^3; b) C_5^1 \times C_4^1 \times C_3^1$$

$$c) C_7^3; d) C_{12}^3 - C_7^3.$$

Exercice n° 40

$$\text{Card } S_2 = A_9^3 = 504$$

$$1) P(A) = \frac{A_5^3}{504} = 0,12$$

$$2) P(B) = \frac{A_4^3}{504} = 0,04$$

$$3) \text{Card}(C) = (A_5^2 \times A_4^1) \times \frac{3!}{2!1!} + (A_5^1 \times A_4^2) \times \frac{3!}{1!2!} + A_4^3$$

$$P(C) = \frac{444}{504} = 0,88$$

$$4) \text{Card}(D) = (A_5^1 \times A_4^2) \times \frac{3!}{1!2!}$$

Exercice n° 41

$$1) \text{Card } A = 7 \times C_6^4$$

$$2) \text{Card } B = C_36^4 \times C_6^0$$

$$3) \text{Card } C = C_1^1 \times C_{41}^3$$

$$4) \text{Card } D = C_6^1 \times C_{36}^3$$

$$5) \text{Card } E = C_7^1 \times C_{35}^3$$

$$6) \text{Card } F = C_1^1 \times C_6^1 \times C_6^1 \times C_{29}^1 + C_6^2 \times C_6^2$$

Exercice n° 42

1) Le choix étant au hasard, il s'agit d'une situation d'équivalabilité.

$$2) P(A) = \frac{8}{32}; P(B) = \frac{16}{32} \quad P(C) = \frac{3 \times 4}{32}$$

$P(A \cap B) = 0$ car un pique est noir et non rouge.

$$P(B \cap C) = \frac{6}{32}; \quad P(A \cup B) = \frac{3}{4}; \quad P(A \cup C) = \frac{17}{32}$$

$$3) P(D) = 1 - \frac{17}{32}.$$

Exercice n° 43

$$\Omega = \{1; 2; 3; 4; 5; 6\}$$

$$P(\Omega) = P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = 1$$

$$\frac{P_1}{1} = \frac{P_2}{2} = \frac{P_3}{3} = \frac{P_4}{4} = \frac{P_5}{5} = \frac{P_6}{6} = P_k$$

$$\frac{P_i}{i} = P_k \Rightarrow P_i = i \times P_k$$

$$\text{on a: } \sum_{k=1}^6 k = 21 \Rightarrow k = \frac{1}{21}$$

$$2) P(\text{pair}) = \frac{2}{21} + \frac{4}{21} + \frac{6}{21}$$

Exercice n° 44

$$\text{Card } \Omega = C_{10}^2 = 45$$

$$P(A) = \frac{C_4^1 \times C_3^1 + C_4^1 \times C_3^1 + C_3^1 \times C_3^1}{45}$$

Exercice n° 45

$$1) P_6 = 1 - (P_1 + P_2 + P_3 + P_4 + P_5)$$

$$P_6 = 0,15$$

$$2) P = P_2 + P_4 + P_6$$

Exercice n° 46

$$1) P = \frac{1}{6} \text{ probabilité d'une face}$$

$$P(A) = P_5 + P_6 = \frac{1}{3}$$

$$P(B) = P_1 + P_2 + P_3 + P_4 + P_5 = \frac{5}{6}$$

$$P(C) = \frac{1}{2}$$

$$2) A \text{ et } B: A \cap B = \{5\} \Rightarrow P(A \cap B) = P_5 = \frac{1}{6}$$

$$P(A) \times P(B) = \frac{5}{18} \neq P(A \cap B)$$

$$A \text{ et } C: A \cap C = \{6\} \Rightarrow P(A \cap C) = \frac{1}{6}$$

$$P(A) \times P(C) = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6} = P(A \cap C)$$

$$B \text{ et } C: B \cap C = \{2; 4\}$$

$$P(B \cap C) = P_2 + P_4 = \frac{1}{3}$$

$$P(B) \times P(C) = \frac{5}{6} \times \frac{1}{2} = \frac{5}{12} \neq P(B \cap C)$$

alors B et C ne sont pas indépendants.

Exercice n° 47

$$E = \{0; b; V\} \text{ (orange, blanche, verte)}$$

1) a) $S_2 = E \times E \setminus \{(0,0); (0,b); (0,V); (b,0); (b,V); (V,0); (V,b); (V,V)\}$

b) card $S_2 = 9$.

$$2) P(A) = \frac{1}{3}; P(B) = \frac{1}{3}; P(C) = \frac{5}{9}$$

Exercice n°48

$$N = 4^8 = 65536$$

2) Pour les réponses justes, on a:

$$P_k = C_8^k \left(\frac{1}{4}\right)^k \times \left(\frac{3}{4}\right)^{8-k}$$

$$3) k=6 \Rightarrow P_6 = \frac{252}{65536}$$

$$4) P(X \geq 6) = P_6 + P_7 + P_8 = \frac{277}{65536}$$

Exercice n°49

$$\text{card } S_2 = C_5^2 = 10$$

$$1) P(A) = \frac{C_3^2}{10} = \frac{1}{10}$$

$$2) P(B) = \frac{C_2^1 \times C_2^1}{10} = \frac{4}{10}$$

$$3) P(C) = \frac{C_1^1 \times C_2^1 + C_2^2}{10} = \frac{3}{10}$$

Exercice n°50

$$P_1 = \frac{8^4}{C_8^4} ; P_2 = \frac{C_1^1 \times C_2^3}{C_3^4}$$

$$P_3 = \frac{C_2^4}{C_3^4} ; P_4 = 1 - P_3$$

$$P_5 = \frac{C_8^2 \times C_8^2}{C_3^4}$$

$$P_6 = \frac{C_7^2 C_3^1 C_2^1 + C_1^1 \times C_7^1 \times C_2^2}{C_3^4}$$

Exercice n°51

$$\text{card } S_2 = C_1^4$$

$$2) P(A) = \frac{C_3^1 \times C_7^3}{210}$$

$$3) P(B) = \frac{C_7^4}{210}$$

$$4) P(C) = \frac{C_3^2 \times C_7^2}{210}$$

$$5) P(D) = 1 - P(B)$$

Exercice n°52

$$1) P_1 = 1 - \frac{25}{100} ; P_2 = \frac{25}{100}$$

$$2) P_3 = \frac{12}{100} - \frac{8}{100} ; P_4 = 1 - \frac{6}{100}$$

Exercice n°53

1) $P(D/A) = 0$ car A et D sont incompatibles;

$$P(D/B) = \frac{3 \times 1}{C_4^2} ; P(D/C) = \frac{2 \times 2}{C_4^2}$$

2) $P(D \cap A) = 0$,

$$P(D \cap B) = P(D/B) \times P(B)$$

$$= \frac{1}{2} \times \frac{C_4^1 \times C_2^1}{C_8^2}$$

$$P(D \cap C) = P(D/C) \times P(C)$$

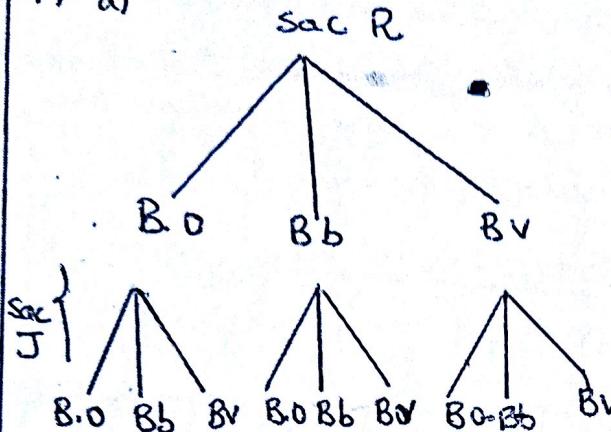
$$= \frac{2}{3} \times \frac{C_4^2}{C_6^2}$$

$$3) P(D) = P(D \cap A) + P(D \cap B) + P(D \cap C)$$

Exercice n°54

Sac R
 $\left. \begin{array}{l} 1b.0 \\ 1b.b \\ 1b.v \end{array} \right\}$

1) a)



b) $\text{Card } S2 = 3^1 \times 3^1 = 9$.

2) $\text{Card } A = 1^1 \times 1^1 + 1^1 \times 1^1 + 1^1 \times 1^1 = 3$

$$P(A) = \frac{1}{3}$$

$$\text{Card } B = 1^1 \times 3^1 \Rightarrow P(B) = \frac{1}{3}$$

$$\text{Card } C = 1^1 \times 1^1 + 1^1 \times 1^1 + 1^1 \times 3^1 = 5$$

Exercice n° 55

Un chemin possible est une 6-liste de l'ensemble (Nord-Est) (6 choix de destination Nord ou Est à chaque carrefour) $\Rightarrow \text{Card } S2 = 2^6$
 Il retrouve la bouteille lorsque le trajet choisi contient 2 fois le Nord et 4 fois l'Est. Il y a C_6^2 chemins favorables. La proba recherchée est $\frac{15}{64}$.

Exercice n° 56

4) $P(A) = 0,2$; $P(A \cup B) = 0,6$

Exercice n° 57

$$\text{Card } S2 = C_{36}^3$$

$$1) P(A) = \frac{C_1^1 \times C_{34}^1 + C_1^1 \times C_1^1 + C_1^1 \times C_{34}^1}{140}$$

$$2) P(B) = \frac{C_{34}^3}{140}$$

Exercice n° 58

1) $P(F) = \frac{9}{10}$, $P(\bar{F}) = \frac{1}{10}$

2) a) $P(T \cap F) = \frac{9}{10} \times 1$

$$P(T \cap \bar{F}) = \frac{1}{10} \times \frac{1}{11}$$

b) $P(T) = P(T \cap F) + P(T \cap \bar{F})$

c) $P(F|T) = \frac{9}{10} \times \frac{11}{10}$

Exercice n° 59

1) $\text{Card } S2 = 12^3$

a) $P(A) = \frac{2^1 \times 3^1 \times 7^1}{1728}$

b) $P(B) = \frac{(2^1 \times 3^1 \times 7^1) \times 3!}{1728}$

c) $\text{Card } C = (7^2 \times 3^1) \times \frac{3!}{2! \cdot 1!}$

2) $\text{Card } S2 = A_{12}^3$

a) $P(A) = \frac{A_4^3}{1320}$ b) $P(B) = \frac{A_3^1 \times A_2^2}{1320}$

c) $\text{Card } C = (A_3^1 \times A_2^2) \times \frac{3!}{1! \cdot 2!}$

d) $\text{Card } D = (A_7^1 \times A_3^1 \times A_2^1) \times 3!$

3) $\text{Card } S2 = C_{12}^3 = 220$

e) $\text{Card } A = C_7^3$

b) $\text{Card } B = C_3^1 \times C_2^2 \Rightarrow P(B) = 0,43$

c) $\text{Card } C = C_2^1 \times C_{10}^2 + C_2^2 \times C_{10}^1$

$P(C) = 0,45$.

Exercice n° 60

1) $P(A) = \frac{3}{10}$; 2) $P(B) = \frac{3^3}{10^3}$

3) $P(C) = \frac{C_3^3}{C_{10}^3}$

Exercice n° 61

10% de gauchers: $P(G) = 0,1$
 1) La probabilité qu'un groupe de 8 personnes contiennent un seul gaucher, au moins un gaucher exactement 3 gauchers: il s'agit de la loi binomiale $n=8$ et $P=0,1$.

a) $P(G=1) = C_8^1 (0,1) \times (0,9)^7$

b) $P(G \geq 1) = 1 - P(G=0)$

c) $P(G=3) = C_8^3 (0,1)^3 \times (0,9)^5$

2) $P = P(G=1) + P(G=2) + P(G=3)$

avec $P(G=2) = C_8^2 (0,1)^2 \times (0,9)^6$

Exercice n° 62

1) A et B sont incompatibles

2) B et C ne sont pas incompatibles

3) $\bar{A} \ll \text{Tirer une boule noire ou rouge} \gg$ et $\bar{B} \ll \text{Tirer une boule blanche ou rouge} \gg$.

Exercice n° 63

1) A et B ne sont pas contraires
 Car $A \cap B = \{5\} \neq \emptyset$

2) B et C ne sont pas incompatibles car $B \cap C = \{2\} \neq \emptyset$

3) C: « La somme obtenue est strictement inférieur à 5 »

4) A et C sont incompatibles car $A \cap C = \emptyset$.

Exercice n° 65

1) $P_1 = \left(\frac{45}{100}\right)^{10} = 0,43 \times 10^{-3}$

2) $P_2 = C_{10}^5 \left(\frac{55}{100}\right)^5 \left(\frac{45}{100}\right)^5 = 0,4$

3) $P_3 = C_{10}^{10} \left(\frac{55}{100}\right)^{10} \left(\frac{45}{100}\right)^0 = 0,025$

Exercice n° 66

$\text{Card } S_2 = C_{12}^2 \times C_{15}^2 = 6930$

$P(A) = \frac{C_4^2 \times C_2^2}{6930}; P(B) = \frac{C_{11}^2 \times C_{10}^2}{6930}$

$P(C) = 1 - P(A)$.

$P(D) = 1 - P(\bar{D})$ avec

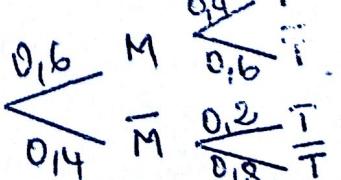
$P(\bar{D}) = \frac{C_4^2 \times C_{12}^2 + C_{15}^2 \times C_{14}^2}{6930}$

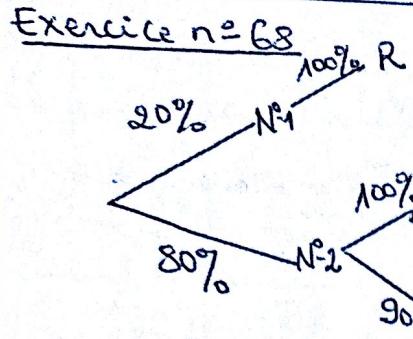
Exercice n° 67

1) $P(M \cap T) = 0,6 \times 0,4 = 0,24$

2) $P(M) = 0,6 \times 0,4 + 0,4 \times 0,2 = 0,32$

3) $P_M(T) = \frac{P(M \cap T)}{P(M)} = 0,75$





1) $P(R) = 20\% \times 100\% + 80\% \times 10\%$

$$P(R) = 0,28$$

2) $P_R(N°2) = \frac{P(R \cap N°2)}{P(R)} = \frac{80\% \times 10\%}{0,28} = \frac{800}{2800} = \frac{2}{7}$

d'où $P_R(N°2) = \frac{2}{7}$.

3) $n \geq 2$

la probabilité d'obtenir une boule rouge portant le n° 1

$P(R_1) = 20\% \times 100\% = \frac{2}{10}$
pour n tirage, la probabilité d'obtenir le fois boule rouge est $P_R = C_n^k \left(\frac{2}{10}\right)^k \times \left(\frac{8}{10}\right)^{n-k}$.

a) Pour obtenir au moins une boule rouge portant n°1 au cours de n tirages

$$P(A) = P_1 + P_2 + \dots + P_n$$

$$\text{ou } P_0 + P_1 + P_2 + \dots + P_n = 1$$

$$\Rightarrow P(A) + P_0 = 1 \Rightarrow P(A) = 1 - P_0$$

$$P(A) = 1 - C_n^0 \left(\frac{2}{10}\right)^0 \left(\frac{8}{10}\right)^n = 1 - \left(\frac{8}{10}\right)^n$$

b) $P(A) \geq 0,99$

$$\Rightarrow 1 - \left(\frac{8}{10}\right)^n \geq 0,99$$

$$\left(\frac{8}{10}\right)^n \leq 0,01 \Rightarrow n \geq \frac{\ln(0,01)}{\ln\left(\frac{8}{10}\right)}$$

$n \geq 20,63$ d'où $\underline{n=21}$

Exercice n° 69

1) $P(M) = 0,5\% = 0,005$

2) $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

a) En choisissant un animal il peut être atteint ou non, c'est donc une épreuve de Bernoulli. En effectuant l'expérience sur les 10 animaux, c'est un schéma de Bernoulli d'où la loi binomiale.

b) $E(X) = n \times p = 10 \times 0,005$

c) $P_k = C_{10}^k (0,005)^k (0,995)^{10-k}$

$$P(A) = P_0 = (0,995)^{10} = 0,952$$

$$P(A) + P(B) = 1 \Rightarrow P(B) = 0,048$$

3) a) $0,005 \quad M \quad \begin{matrix} 0,8 \\ 0,2 \end{matrix} \\ \diagdown \quad \diagup \\ 0,995 \quad \bar{M} \quad \begin{matrix} 0,1 \\ 0,9 \end{matrix}$

$$\begin{matrix} & & T \\ & & \diagdown \\ & & T \\ & & \diagup \\ & & T \end{matrix}$$

b) $P(T) = 0,005 \times 0,8 + 0,995 \times 0,1$

c) $P_T(M) = \frac{P(T \cap M)}{P(T)} = \frac{0,005 \times 0,8}{0,1035}$

Exercice n° 70

2) $P(n) = \frac{2n(2n-1)}{(3n-1)(3n-2)}$

Exercice n° 71

1) $S_2 = \{G; F\}$

Corrigés

$$P(G) = P(F) = \frac{1}{2}$$

$$2) P_E = C_5^2 \left(P(G) \right)^{P_E} \times \left(P(F) \right)^{5-P_E}$$

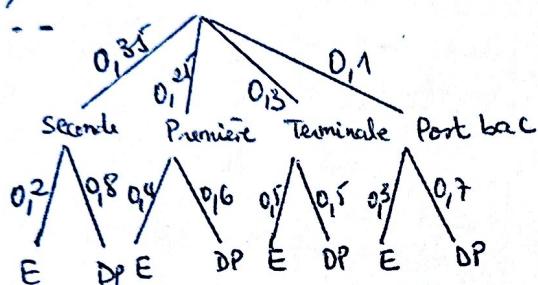
$$P(A) = C_5^2 \left(\frac{1}{2} \right)^2 \left(\frac{1}{2} \right)^3 = 0,3125$$

$$3) P(B) = P_2 + P_3 + P_4 + P_5$$

$$P(B) = 1 - (P_0 + P_1) = 0,8125$$

Exercice n° 72

1)



$$2) P(E) = 0,2 \times 0,35 + 0,2 \times 0,4 + 0,3 \times 0,5 + 0,1 \times 0,3$$

$$P(E) = 0,07 + 0,1 + 0,15 + 0,03 = 0,35$$

$$3) P_E(T) \approx \frac{P(T \cap E)}{P(E)} = \frac{0,3 \times 0,5}{0,35}$$

$$P_E(T) = 0,40.$$

Exercice n° 73

$$P_6 = 3P_1 \text{ et } P_1 = P_2 = P_3 = P_4 = P_5$$

$$1) P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = 1 \Rightarrow P_1 = \frac{1}{8}$$

$$P_6 = \frac{3}{8}$$

$$2) P(A) = P_2 + P_4 + P_6 = \frac{5}{8}$$

$$3) P(B) = P_2 + P_4 = \frac{1}{4}$$

Exercice n° 74

Sexe	Garçons	Filles	Total
Infirmier(s)	5	20	25
Scout(e) Médical	0	3	3
Autres	1	1	2
Total	6	24	30

$$2) a) P(A) = \frac{25}{30} = 0,83$$

$$P(B) = \frac{24}{30} = 0,8$$

b) A et B: « l'élève interrogé est une fille infirmière »

$$c) P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\text{or } P(A \cap B) = \frac{20}{30} = 0,66$$

$$2) P(A \cup B) = \frac{25}{30} + \frac{24}{30} - \frac{20}{30} = \frac{29}{30}$$

$$3) P(C) = \frac{3}{24} = 0,125.$$

Exercice n° 75

1) 2 boules rouges
1 boule verte
1 boule jaune

4) Tirage successif de 2 boules avec remise.

$$\text{Comb S2} = 4^2 = 16 \Rightarrow P(E) = \frac{22}{16}$$

$$P(F) = \frac{(2^1 \times 1) \times 2 + (2^1 \times 1) \times 2}{16} = 0,5$$

2) G = EUF si au moins une boule rouge est tirée

$$P(G) = P(E) + P(F) = 0,75$$

Exercice n° 76, 77... (voir exo 73)

Exercice n° 78

$$a) P(A) = \frac{1}{7}; b) P(B) = \frac{2}{3}$$

$$c) P(C) = \frac{1}{2}$$

Exercice n° 79

$$a) P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\Rightarrow P(A \cap B) = 0,2.$$

$P(A \cap B) = P(A) \times P(B) = 0,4 \times 0,5 = 0,2$
alors A et B sont indépendants

b)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) - P(A) \times P(B)$$

$$P(A \cup B) = 0,52$$

$$P(A \cup \bar{B}) = P(A) + P(\bar{B}) - P(A \cap \bar{B})$$

$$= P(A) + 1 - P(B) - P(A) \times (1 - P(B))$$

$$P(A \cup \bar{B}) = 0,68$$

$$P(\bar{A} \cup B) = P(\bar{A}) + P(B) - P(\bar{A} \cap B)$$

$$= (1 - P(A)) + P(B) - (1 - P(A)) \times P(B)$$

$$P(\bar{A} \cup B) = 0,88$$

$$P(\bar{A} \cup \bar{B}) = P(\bar{A}) + P(\bar{B}) - P(\bar{A} \cap \bar{B})$$

$$= P(\bar{A}) + P(\bar{B}) - P(\bar{A}) \times P(\bar{B})$$

$$P(\bar{A} \cup \bar{B}) = 0,92.$$

Exercice n° 80

5 jetons $\begin{cases} 1b \rightarrow 3pt \\ 2r \rightarrow 2pt \times 2 \\ 2v \rightarrow 1pt \times 2 \end{cases}$

$$1) a) P(A) = \frac{2}{5}$$

$$b) P(B) = \frac{2}{5} + \frac{1}{5} = \frac{3}{5}$$

2)

RR	VR	VR	BR	VR
R	V	R	R	V
4	2	3	5	4

corrigés

$$P(A) = \frac{(A'_1 \times A'_2) \times 2 + (A'_2 \times A'_1) \times 2 + (A'_2 \times A'_1) \times 2}{20}$$

$$P(A) = 0,8$$

$$P(B) = \frac{A'_2 + (A'_2 \times A'_1) \times 2}{20} = 0,3$$

$$P(C) = \frac{(A'_1 \times A'_2) \times 2}{20} = 0,2$$

$$P(D) = \frac{A'_2 + (A'_2 \times A'_1) \times 2 + (A'_2 \times A'_1) \times 2}{20}$$

$$P(D) = 0,5$$

Exercice n° 81

$$\text{Card SL} = C_8^2 = 28$$

$$a) \text{Card A} = C_5^1 \times C_3^1$$

$$P(A) = \frac{15}{28}$$

$$b) P(B) = \frac{C_3^2}{28} = 0,107$$

$$P(C) = \frac{C_3^2 + C_5^1 \times C_3^1}{28} = 0,64$$

Exercice n° 82

$$1) P = 0,08 \Rightarrow q = 0,92$$

$$2) P_k = C_8^k (0,08)^k (0,92)^{8-k}$$

$$P(A) = C_8^0 (0,08)^0 (0,92)^8$$

$$P(B) = C_8^3 (0,08)^3 (0,92)^5$$

$$P(C) \Rightarrow k \geq 4.$$

Exercice n° 83

$$1) a) P(G) = \frac{52}{102}; b) P(F) = \frac{50}{102}$$

$$2) a) C_5^3 \left(\frac{25}{51}\right)^3 \left(\frac{26}{51}\right)^2$$

$$b) C_5^5 \left(\frac{25}{51}\right)^5 \left(\frac{26}{51}\right)^0$$

Exercice n° 84

$$\text{Card } SL = A_{10}^3$$

$$1) P(A) = \frac{3! (5 \times 4 \times 1)}{720}$$

$$2) P(B) = \frac{5 \times 4 \times 3}{720}$$

$$3) P(C) = P(B)$$

$$4) P(C) = 1 - P(C)$$

Exercice n° 85 (Voir exo 31)

Exercice n° 86

	A	B	C	Total
Defectueuses	1	11,2	0,5	12,7
Bonnes	19	28,8	49,5	97,3
Total	20	30	50	100

Exercice n° 87

$$U_1 = \begin{cases} 3bb \\ 1bn \end{cases} \quad U_2 = \begin{cases} 1bb \\ 2bn \end{cases}$$

$$\text{Card } SL = C_4^1 + C_3^1 = 7$$

$$1) P(A) = \frac{C_3^1 + C_1^1}{7} = \frac{4}{7}$$

$$2) P(B) = \frac{1}{3} \times \frac{3}{7} = \frac{1}{7}$$

Exercice n° 88

$$1) a) \text{Card } SL = C_{36}^3 = 7140$$

$$P_1 = \frac{C_{10}^1 \times C_{22}^1 \times C_4^1}{7140}$$

$$b) \text{Card } SL = C_{36}^4 = 58905$$

$$P_2 = \frac{C_{10}^2 \times C_{22}^1 \times C_4^1 + C_{10}^1 \times C_{22}^2 \times C_4^1 + C_{10}^1 \times C_{22}^1 \times C_4^2}{58905}$$

$$2) \text{Card } SL = A_{36}^3 \Rightarrow P_3 = \frac{10 \times 22 \times 4}{42840}$$

$$3) \text{Card } SL = 36^3 \Rightarrow P_4 = \frac{10 \times 22 \times 4}{46.656}$$

Exercice n° 89

$$\text{Card } SL = C_{2n}^2 = \frac{2n!}{2!(2n-2)!} = n(2n-1)$$

$$a) P(n) = \frac{C_{n-1}^1 \times C_{n-1}^1}{n(2n-1)} = \frac{(n-1)^2}{n(2n-1)}$$

$$b) \lim_{n \rightarrow +\infty} P_n = \frac{1}{2}$$

$$c) \left| P(n_0) - \frac{1}{2} \right| \leq \frac{1}{10} \Rightarrow \left| \frac{n^2}{2n^2-1} - \frac{1}{2} \right| \leq \frac{1}{10}$$

$$\left| -\frac{3n+2}{4n^2-2} \right| < \frac{1}{10}$$

Exercice n° 90

$$2) a) P_n = \frac{C_n^1 \times C_{2n}^1}{C_{3n}^2} = \frac{4n}{9n-3}$$

b) $P_{n+1} - P_n < 0$ alors P_n est décroissante.

Exercice n° 92

La probabilité de répondre à une bonne réponse est :

$$P = \frac{10}{40} = \frac{1}{4}$$

$$1) P_k = C_{10}^k \left(\frac{1}{4}\right)^k \left(\frac{3}{4}\right)^{10-k}$$

$$P_0 = \left(\frac{3}{4}\right)^{10} = 0,05$$

$$P_1 = C_{10}^1 \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^9 = 0,018$$

$$P_2 = C_{10}^2 \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^8 = 6,25 \cdot 10^{-3}$$

⋮

$$P_{10} = C_{10}^{10} \left(\frac{1}{4}\right)^{10} \left(\frac{3}{4}\right)^0 = 9,5 \cdot 10^{-7}$$

$$2) P(k \geq 8) = P_8 + P_9 + P_{10} = 1,23 \cdot 10^{-5}$$

Exercice n° 93

$$1) \sum P_i = 1 \Rightarrow \alpha = \frac{1}{12}$$

$$2) E(x) = \sum x_i \cdot p_i = \frac{47}{12}$$

$$V(x) = 3,07; \text{ et } \delta(x) = 1,75$$

Exercice n° 94

$$X = \{0, 1, 2, 3, 4\}$$

$$P_{Xk} = C_k^k \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{4-k}$$

1)

X	0	1	2	3	4
P(X=x_i)	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{16}$

$$2) E(x) = n \cdot p = 4 \cdot \frac{1}{2} = 2$$

$$3) V(x) = n \cdot p \cdot q = 4 \cdot \frac{1}{2} \cdot \frac{1}{2} = 1$$

$$\delta(x) = 1.$$

Exercice n° 95

$$1) \sum P_i = 1 \Rightarrow \alpha = \frac{2}{3}$$

Corrigés

x _i	3	5	7	9	11
P(X=x _i)	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{18}$

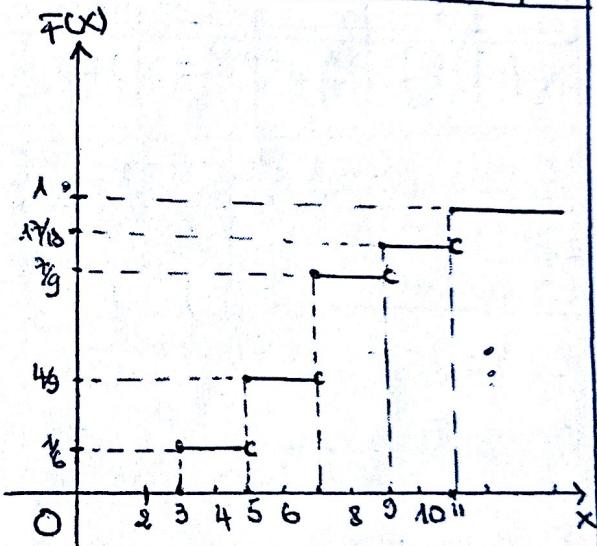
$$2) E(x) = \frac{19}{3}$$

$$V(x) = \sum (x_i - E(x))^2 \cdot P_i = \frac{44}{9}$$

$$\delta(x) = \frac{2\sqrt{11}}{3}$$

3)

x	$]-\infty; 3]$	$[3; 5]$	$[5; 7]$	$[7; 9]$	$[9; 11]$	$[11; +\infty]$
F(x)	0	$\frac{1}{6}$	$\frac{4}{9}$	$\frac{7}{9}$	$\frac{17}{18}$	1



Exercice n° 96

$$1) \text{a) } \frac{1}{4} + \frac{1}{4} + b + \frac{3}{8} = 1 \Rightarrow b = \frac{1}{8}$$

b)

x	$]-\infty; 0]$	$[0; 1]$	$[1; 2]$	$[2; 3]$	$[3; +\infty]$
F(x)	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{5}{8}$	1

Corrigés

c) $P(X < 1 \text{ ou } X > 3) = P(X=0) + P(X=3)$
 $= \frac{1}{4} + \frac{3}{8} = \frac{5}{8}$

d) $P(X < 3) = P(X=2) = \frac{1}{8}$

e) $E(X) = \frac{1}{4} + \frac{2}{8} + \frac{9}{8} = \frac{13}{8}$

$$E(X^2) = 0 \times \frac{1}{4} + 1 \times \frac{1}{4} + 2^2 \times \frac{1}{8} + 3^2 \times \frac{3}{8}$$

$$E(X^2) = \frac{33}{8}$$

2) $Y = 2X + 5$

Y	5	7	9	11
$P(Y)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{3}{8}$

$$E(Y) = \frac{66}{8} = \frac{33}{4} \quad V(Y) = \frac{95}{16}$$

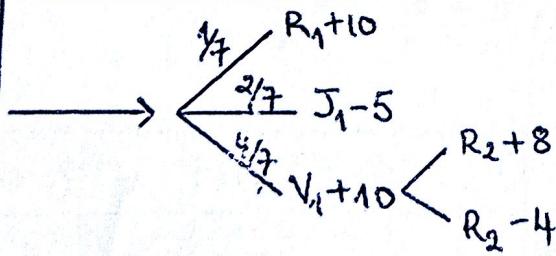
Exercice n° 97

$$P(A) = 1 - \frac{5}{200} \Rightarrow P(\bar{A}) = \frac{5}{200}$$

$$P(C \text{ ou } B) = \frac{3}{200} + \frac{10}{200} - \left(\frac{3}{200} \times \frac{10}{200} \right)$$

$$P(D) = (P(A))^3$$

Exercice n° 98



R_1 : « la boule tirée au premier tirage est rouge »

R_2 : « la boule tirée au 2^e tirage

est rouge »
 J_1 : « la boule tirée au premier tirage jaune »

V_1 : « la boule tirée est verte »

$$P(R_1) = \frac{1}{4}; \quad P(J_1) = \frac{2}{7}; \quad P(V_1) = \frac{4}{7}$$

X_i	-5	-4	8	10
$P(X=i)$	$\frac{2}{7}$	$\frac{10}{21}$	$\frac{2}{21}$	$\frac{1}{7}$

Exercice n° 99

A = { 4 billets gagnants
18 billets non gagnants }

B = { 5 gagnants
10 non gagnants }

$$\text{Card } S = C_{12}^2 \times C_{15}^1 = 990$$

1) $P(A) = \frac{C_4^1 \times C_8^1 \times C_{10}^1 + C_4^2 \times C_8^2}{990}$

2) $\text{Card } B = C_4^2 \times C_{10}^1 + C_4^1 (C_8^1 + C_4^3 + C_4^2)$

3) a) $X = \{0; 2500; 5000; 7500; 10000\}$

$$P(X=0) = \frac{C_8^2 \times C_{10}^1}{990} = \frac{28}{99}$$

$$P(X=2500) = \frac{C_8^1 C_4^1 C_{10}^1}{990} = \frac{32}{99}$$

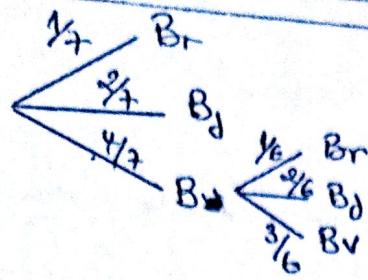
$$P(X=5000) = \frac{C_8^2 C_5^1 + C_4^2 C_{10}^1}{990} = \frac{20}{99}$$

$$P(X=7500) = \frac{C_8^1 C_4^1 C_5^1}{990} = \frac{16}{99}$$

$$P(X=10000) = \frac{C_4^2 C_5^1}{990} = \frac{3}{99}$$

Exercice n° 100

1) Construction de l'arbre pondéré



2) $X = \{-5; -4; 8; 10\}$

a) $P(X=-5) = \frac{2}{7}$

$$P(X=-4) = \frac{4}{7} + \left(\frac{1}{3} + \frac{1}{2}\right) = \frac{20}{42}$$

$$P(X=8) = \frac{4}{7} \times \frac{1}{6} = \frac{4}{42}$$

$$P(X=10) = \frac{1}{7}$$

b) $E(X) = -\frac{8}{7}$

3) $E(X) = -\frac{10}{7} - \frac{40}{21} + \frac{20}{21} = 0$

$F = 20F.$

Exercice n° 101

g) $\begin{cases} 5 \text{ cartes T} \\ 1 \text{ carte R} \\ 3 \text{ cartes C} \end{cases} \Rightarrow \text{Comb S}L = C_9^3$

1) $P(\bar{T}) = \frac{C_5^0 \times C_4^3}{84} = \frac{1}{21}$

2) $P(A) = \frac{C_5^1 C_1^1 C_3^1}{84} = \frac{5}{28}$

$P(B) = 1 - P(\bar{T}) = \frac{20}{21}$

3) $X = \{0, 1, 2, 3\}$

$$P(X=0) = \frac{C_3^0 C_6^3}{84} = \frac{5}{21}$$

$$P(X=1) = \frac{C_3^1 C_6^2}{84} = \frac{45}{28}$$

Corrigés

$$P(X=2) = \frac{C_3^2 C_6^1}{84} = \frac{3}{14}$$

$$P(X=3) = \frac{C_3^3}{84} = \frac{1}{84}$$

$$E(X) = 1$$

Exercice n° 102

02	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

$$X = \{0, 1, 2, 3, 4, 5\}$$

x_i	0	1	2	3	4	5
$P(X=x_i)$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$

Exercice n° 103

x_i	0	1	2	3	4
$P(X=x_i)$	$\frac{1}{33}$	$\frac{8}{33}$	$\frac{15}{33}$	$\frac{8}{33}$	$\frac{1}{33}$

2) $P' = C_{10}^6 (1-P)^4 \times P^6$ avec $P = \frac{17}{33}$

Exercice n° 104

2)

x_i	-1	1
$P(X=x_i)$	$\frac{-12n}{(n+5)(n+6)}$	$\frac{n^2 - n + 30}{(n+5)(n+6)}$

c) le jeu est équitable si:

$$E(X) = 0$$

Exercice n° 105

$$1) P_n = \frac{3n}{8n-2}; \quad 3) n \geq 10$$

Exercice n° 106

La probabilité d'une face est $\frac{1}{6}$ et la probabilité d'une face multiple de 3 est $2 \times \frac{1}{6} = \frac{1}{3}$.

$$X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

1) La probabilité d'obtenir 4 fois multiples de 3 est :

$$P_k = C_8^k p^k (1-p)^{8-k} \text{ avec}$$

$$k = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}.$$

x_i	0	1	2	3	4	5	6	7
$P(x=x_i)$	$\frac{256}{6561}$	$\frac{1024}{6561}$	$\frac{1792}{6561}$	$\frac{1792}{6561}$	$\frac{1120}{6561}$	$\frac{448}{6561}$	$\frac{112}{6561}$	$\frac{16}{6561}$

8

1

$\frac{1}{6561}$

Exercice n° 107

x_i	-2	-1	0	1	2
$P(x=x_i)$	$\frac{6}{66}$	$\frac{12}{66}$	$\frac{23}{66}$	$\frac{15}{66}$	$\frac{10}{66}$

Exercice n° 109

$$P_2 = P_4 = P_6 = 2P_1 = 2P_3 = 2P_5$$

$$1) P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = 1.$$

$$\Rightarrow 9P_1 = 1 \Rightarrow P_1 = \frac{1}{9}$$

$$2) X = \{0, 500, 1000\}$$

a)

x_i	0	500	1000
$P(x=x_i)$	$\frac{1}{9}$	$\frac{5}{9}$	$\frac{3}{9}$

$$b) E(X) = \frac{5500}{9}$$

$$V(X) = 373456,7438$$

c)

X	$[-n; 0]$	$[0; 500]$	$[500; 1000]$	$[1000; +\infty]$
$F(x)$	0	$\frac{1}{3}$	$\frac{2}{3}$	1

Exercice n° 111

$$1) P(A) = P_1 \bar{P}_2 \bar{P}_3 + \bar{P}_1 P_2 \bar{P}_3 + \bar{P}_1 \bar{P}_2 P_3$$

avec $\bar{P}_1 = 1 - 0,4; \bar{P}_2 = 1 - 0,5; \bar{P}_3 = 1 - 0,7$

$$2) P(\bar{B}) = \bar{P}_1 \bar{P}_2 \bar{P}_3$$

$$3) P(C) = 1 - P(\bar{B})$$

Exercice n° 112

a)

DV	0	0	1	1	2	2
0	0	0	1	1	2	2
1	1	1	2	2	3	3
1	1	1	2	2	3	3
1	1	1	2	2	3	3
2	2	2	3	3	4	4
2	2	2	3	3	4	4

$$X = \{0, 1, 2, 3, 4\}$$

x_i	0	1	2	3	4
$P(x=x_i)$	$\frac{2}{36}$	$\frac{8}{36}$	$\frac{12}{36}$	$\frac{10}{36}$	$\frac{4}{36}$

Exercice n° 113

$$P(G_1) = 0,01 \quad P(G_2) = 0,02$$

$$1) P(E_1) = P(G_1) = 0,01$$

$$P(E_2) = P(G_1 \cup G_2) = P(G_1) + P(G_2) - P(G_1 \cap G_2) \\ = 0,01 + 0,02 - 0,01 \times 0,02 \\ = 0,0298$$

$$P(E_2) = 0,0298$$

$$P(E_3) = P(\bar{G}_1 \cap \bar{G}_2) = P(\bar{G}_1) \times P(\bar{G}_2) \\ = 0,999 \times 0,98$$

$$P(E_3) = 0,9702$$

$$2) X = \{0, 1, 2\}$$

$$P(X=0) = P(E_3)$$

$$P(X=1) = P(G_1) \times P(G_2) + P(\bar{G}_1) \times P(G_2) \\ = 0,0296$$

$$P(X=2) = P(G_1 \cap G_2) = P(G_1) \times P(G_2) \\ = 0,002$$

X	0	1	2
P(X)	0,9702	0,0296	0,002

$$b) E(X) = 0,03$$

Exercice n° 114

$$1) \text{Card } S_2 = A_{12}^3$$

$$\text{Card } A = A_3^1 \times A_4^1 \times A_5^1$$

$$\text{Card } B = (A_3^1 \times A_4^1 \times A_5^1) \times 3!$$

2)

x_i	0	1	2	3
$P(x=x_i)$	$\frac{C_3^3}{C_{12}^3}$	$\frac{C_3^1 C_9^1}{C_{12}^3}$	$\frac{C_3^2 C_9^1}{C_{12}^3}$	$\frac{C_3^3}{C_{12}^3}$

Exercice n° 115

1) Voir exercice n° 112

$$2) a) P = C_6^2 \left(\frac{35}{66}\right)^2 \times \left(\frac{1}{36}\right)^4$$

$$b) P' = C_6^0 \left(\frac{35}{66}\right)^0 \left(\frac{1}{36}\right)^6 + C_6^1 \left(\frac{35}{66}\right)^1 \left(\frac{1}{36}\right)^5 + \\ C_6^2 \left(\frac{35}{66}\right)^2 \left(\frac{1}{36}\right)^4$$

Corrigés

Exercice n° 116

x_i	0	1	2
$P(x=x_i)$	$\frac{n}{3n+3}$	$\frac{2n+1}{3n+3}$	$\frac{2}{3n+3}$

$$3) E(X) = \frac{59}{12} \Rightarrow n = 3$$

$$4) E(X) < 4,8 \Rightarrow n > 42.$$

Exercice n° 117

$$1) \text{Card } S_2 = C_{20}^2 \Rightarrow P_1 = \frac{C_{14}^2}{C_{20}^2}$$

$$2) P_2 = C_4^1 \left(\frac{99}{190}\right)^1 \left(\frac{91}{190}\right)^3$$

3)

x_i	0	200	400	500	700	1000	1200	1500
$P(x=x_i)$	$\frac{91}{190}$	$\frac{42}{190}$	$\frac{3}{190}$	$\frac{28}{190}$	$\frac{6}{190}$	$\frac{15}{190}$	$\frac{3}{190}$	$\frac{2}{190}$

Exercice n° 118

$$U_1 \begin{cases} 1N \text{ } \# 1 \\ 3N \text{ } \# 2 \\ \times \text{ } 4N \text{ } \# 4 \end{cases} \quad U_2 \begin{cases} 1N \text{ } \# 3 \\ 2N \text{ } \# 5 \\ \times \text{ } 3N \text{ } \# 6 \end{cases}$$

$$\text{Card } S_2 = C_8^1 \times C_6^1 = 48$$

$$1) a) P(X=2 \text{ et } Y=6) = \frac{C_3^1 C_3^1}{48} = \frac{9}{48}$$

$$b) \text{Card } (X+Y \geq 8) = C_1^1 (C_1^1 + C_2^1 + C_3^1) + \\ C_3^1 C_3^1 + C_4^1 C_2^1 + C_4^1 C_3^1 = 35$$

$$P(X+Y \geq 8) = \frac{35}{48}$$

$$2) P(A) = P(X+Y \geq 8)$$

$$P(Z) = C_{10}^k [P(A)]^k [1-P(A)]^{10-k}$$

$$P(Z=5) = 0,075 \text{ avec } k=5$$

Exercice n° 119

$$P_g = 10\% = \frac{1}{10}$$

$$1) P_k = C_8^k P_g^k P_d^{8-k}$$

$$2) P_1 = C_8^1 \left(\frac{1}{10}\right) \left(\frac{9}{10}\right)^7 = 0,382$$

$$b) P_0 + P_1 + \dots + P_8 = 1$$

$$P(A) = P_1 + P_2 + \dots + P_8 = 1 - P_0 = 0,57$$

$$c) P_3 = C_8^3 \left(\frac{1}{10}\right)^3 \left(\frac{9}{10}\right)^5 = 0,033$$

$$2) P_k = C_{10}^k \left(\frac{7}{10}\right)^k \left(\frac{3}{10}\right)^{10-k}$$

$$P_8 = 0,2334$$

$$3) X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

Exercice n° 120

$$8 \text{ jetons} \left\{ \begin{array}{l} 4 N^0 \\ 3 N^1 \\ 1 N^2 \end{array} \right.$$

$$1) \text{Card } S_2 = C_8^2$$

$$2) P(A) = \frac{C_4^2}{28} = \frac{3}{14}$$

$$3) P(B) = \frac{C_4^1 \times C_4^1 + C_4^2}{28} = \frac{11}{14}$$

4)

+	0	1	2
0	0	1	2
1	1	2	3
2	2	3	x

$$\text{d'où } X = \{0, 1, 2, 3\}$$

$$b) P(X=0) = \frac{C_4^2}{28} = \frac{3}{14}$$

$$P(X=1) = \frac{C_4^1 C_3^1}{28} = \frac{3}{7}$$

Corrigés

$$P(X=2) = \frac{C_4^1 C_1^1 + C_3^2}{28} = \frac{1}{4}$$

$$P(X=3) = \frac{C_1^1 C_3^2}{28} = \frac{3}{28}$$

$$c) E(X) = \frac{5}{4}$$

Exercice n° 121

$$U \left\{ \begin{array}{l} 6bB \\ 3bR \\ 2bV \end{array} \right.$$

$$\text{Card } S_2 = C_{11}^3 = 165$$

$$1) P(A) = \frac{C_6^3 + C_3^3}{165} = \frac{7}{55}$$

$$P(B) = \frac{C_6^1 C_3^1 C_2^1}{165} = \frac{12}{55}$$

$$2) X = \{0; 1; 2; 3\}$$

$$a) P(X=0) = \frac{C_5^3}{165} = \frac{2}{33}$$

$$P(X=1) = \frac{C_6^1 C_5^2}{165} = \frac{4}{11}$$

$$P(X=2) = \frac{C_6^2 C_5^1}{165} = \frac{5}{11}$$

$$P(X=3) = \frac{C_6^3}{165} = \frac{4}{33}$$

b)

X]-\infty; 0[[0; 1[[1; 2[[2; 3[[3; +\infty]
F(x)	0	$\frac{2}{33}$	$\frac{14}{33}$	$\frac{29}{33}$	1

$$c) E(X) = \frac{18}{11}; V(X) = \frac{72}{121}$$

Exercice n° 122

$$12b \left\{ \begin{array}{l} 5b N^0 \\ 4b N^1 \\ 3b N^2 \end{array} \right.$$

$$\text{Card } S_2 = C_{12}^3$$

$$1) P(A) = \frac{C_4^1 C_8^2 + C_8^1 C_4^2 + C_4^3}{164} = \frac{11}{55}$$

$$P(B) = \frac{C_5^1 C_4^1 C_3^1}{164} = \frac{3}{11}$$

$$P(C) = \frac{C_5^3 + C_4^3 + C_3^3}{220} = \frac{3}{44}$$

$$P(D) = \frac{C_5^2 \times C_7^1 + C_4^2 \times C_8^1 + C_3^2 \times C_9^1}{220}$$

2)

$$a) x = \{6, 7, 8, 9, 10, 11, 12, 14\}$$

$$b) P(x=6) = \frac{C_5^3}{220} = \frac{1}{22}$$

$$P(x=7) = \frac{C_5^2 \times C_4^1}{220} = \frac{2}{11}$$

$$P(x=8) = \frac{C_5^2 C_3^1 + C_5^1 C_4^2}{220} = \frac{3}{11}$$

$$P(x=9) = \frac{C_5^1 C_4^1 \times C_3^1 + C_4^3}{220} = \frac{16}{55}$$

$$P(x=10) = \frac{C_3^2 C_5^1 + C_4^2 C_3^1}{220} = \frac{3}{20}$$

$$P(x=11) = \frac{C_3^2 C_4^1}{220} = \frac{3}{55}$$

$$P(x=12) = \frac{C_3^3}{220} = \frac{1}{220}$$

$$c) E(x) = \frac{17}{2}$$

$$3) a) P(E) = P(x > 10) \\ = P(x=11) + P(x=12) + P(x=13)$$

$$P(E) = \frac{23}{110}$$

$$b) P_R = C_3^k (P(E))^k (1-P(E))^{3-k}$$

$$P_2 = C_3^2 \left(\frac{23}{110}\right)^2 \left(\frac{87}{110}\right)$$

Exercice n° 123

$$1) P(A) = \frac{C_5^5}{C_{16}^5}, P(B) = \frac{C_4^1 \times C_{12}^4}{C_{16}^5}$$

$$P(C) = 1 - (P(A) + P(B))$$

Corrigés

$$2) a) n = 4$$

$$b) P(x=0) = C_n^0 p^0 (1-p)^n$$

$$P(x=1) = C_n^1 p^1 (1-p)^{n-1}$$

$$c) P_n = 1 - (P(x=0)) + P(x=1)$$

$$d) P_m > 0,9$$

e) $\frac{U_{n+1}}{U_n} < 1$ alors (U_n) est une suite décroissante.

Exercice n° 124

U ₁	2N	2B	1B, 1N
U ₂	2N	2B	1B, 1N

$$\text{Card } S_2 = C_{n+3}^2 \times C_5^2$$

$$P(A) = \frac{C_3^2 \times C_3^2 + C_n^2 \times C_4^2 + C_7^1 \times C_7^1 + C_2^2 \times C_3^1}{\text{Card } S_2}$$

$$P(A) = \frac{3n^2 + 15n + 9}{5(n+3)(n+2)}$$

$$2) P(B) = \frac{C_7^1 \times C_3^1 \times C_2^1 + C_3^2 \times C_2^1 \times C_3^1}{\text{Card } S_2}$$

$$P(B) = \frac{9n+18}{5(n+3)(n+2)}$$

3) a) le gain maximum du joueur est atteint si $d=0$ soit $g=30n-200$
le jeu est profitable au joueur si $g > 0$; $n > \frac{20}{3} > 6$.

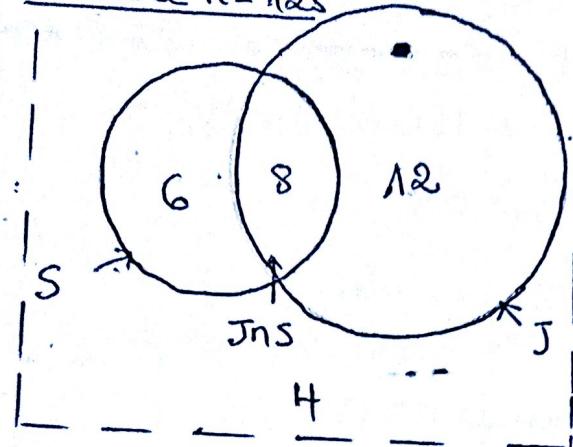
b)

x _i	200	10n-200	20n-200	30n-200
P(x=x _i)	$\frac{n(2n+1)}{5(n+3)(n+2)}$	P(A)	P(B)	$\frac{n}{5(n+3)(n+2)}$

Page 75

$$c) E(X) = \frac{6n^3 + 66n^2 + 108n}{(n+3)(n+2)} - 200$$

Exercice n° 125

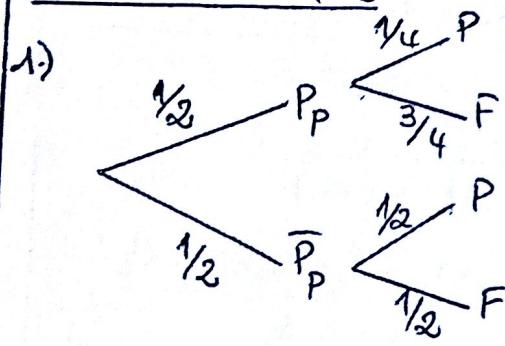


$$P(A) = \frac{12}{30} = 0,4$$

$$P(B) = \frac{24}{30} = 0,8$$

$$P(C) = \frac{1}{6} \times \frac{5}{24}$$

Exercice n° 126



$$a) P(P) = \frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$$

$$b) P_P(P_p) = \frac{\frac{1}{2} \times \frac{1}{4}}{\frac{3}{8}} = \frac{1}{3}$$

$$c) P_E = C_3^E \left(\frac{3}{8}\right)^E \left(\frac{5}{8}\right)^{3-E}$$

$$P_1 + P_2 + P_3 = 1 - P_0 = 1 - \left(\frac{5}{8}\right)^3 = 0,75$$

$$2) P_1 + P_2 + P_3 = 0,75$$

$$3) P = \frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{3}{4} + \frac{1}{2} \times \frac{1}{2} = 1$$

Exercice n° 127

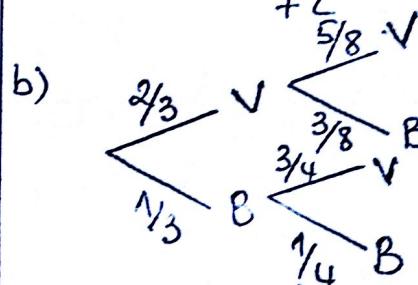
$\begin{cases} 6bV \\ 1nbB \end{cases}$ Tirage successif sans remise
 de 2 boules

2b même $\rightarrow 100F$
 2b \neq b $\rightarrow -100F$

$$1) n=3 \quad \text{card } \Omega = A_3^2 = 72.$$

$$a) P(A) = \frac{A_6^2 + A_3^2}{72} = 0,5$$

$$P(B) = \frac{(A_6^1 \times A_3^1) \times 2}{72} = 0,5$$



$$P_V(B_2) = \frac{3}{8}$$

$$2) n > 3 \Rightarrow \text{card } \Omega = A_{6+n}^2 = (6+n)(5+n-1)$$

$$a) P(X=-100) = \frac{(A_6^1 A_n^1) \times 2}{(n+6)(n+5)} = \frac{12}{(n+6)}$$

$$P(X=100) = \frac{A_6^2 + A_n^2}{(n+6)(n+5)} = \frac{n^2 - n + 30}{(n+6)(n+5)}$$

$$b) E(X) = \frac{-100 \times 12n + 100(n^2 - n + 30)}{(n+6)(n+5)}$$

$$c) E(X) \geq 0 \Rightarrow n^2 - 13n + 30 \geq 0$$

$$\boxed{n=10}$$

Exercice n° 129

N° 1 $\rightarrow 10F$ N° 3 ou 5 ou 6 $\rightarrow 0$

N° 2 ou 4 $\rightarrow 1F$ mise $\rightarrow 2F$

$$X = 10 - 2 = 8; \quad X = 1 - 2 = -1; \quad X = 0 - 2$$

$$X = \{-2; -1; 8\}$$

$$P_1 = P_2 = P_3 = P_4 = P_5 = P_6 = \frac{1}{6}$$

$$P(X=8) = \frac{1}{6}; P(X=-1) = P_2 + P_4 = \frac{1}{3}$$

$$P(X=-2) = P_3 + P_5 + P_6 = \frac{1}{2}$$

$$3) E(X) = 0 \quad V(X) = 13 \dots$$

Exercice n° 130

$$1) \sum P(X=x_i) = 1$$

$$E(X) = 5,6$$

$$\begin{cases} \alpha + \beta = 1 - 0,3 \Rightarrow \alpha + \beta = 0,7 \\ 0,2 + 5\alpha + 8\beta + 1 = 5,6 \quad | \cdot 5 \alpha + 8\beta = 4,4 \end{cases}$$

$$\beta = 0,3 \text{ et } \alpha = 0,4$$

$$2) V(X) = 8,04 \Rightarrow \sigma(X) = 2,83$$

Exercice n° 132

$$1) \text{Card } \Omega = 5^2 = 25$$

2) a)

	$-\sqrt{2}$	-1	0	1	$\sqrt{2}$
$-\sqrt{2}$	2	$\sqrt{3}$	$\sqrt{2}$	$\sqrt{3}$	2
-1	$\sqrt{3}$	$\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{3}$
0	$\sqrt{2}$	1	0	1	$\sqrt{2}$
1	$\sqrt{3}$	$\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{3}$
$\sqrt{2}$	2	$\sqrt{3}$	$\sqrt{2}$	$\sqrt{3}$	2

$$P(A) = \frac{8}{25} \quad P(B) = \frac{1^1 \times 2^1}{25} = \frac{2}{25}$$

$$3) P_k = C_3^k (P(A))^k (1-P(A))^{3-k}$$

$$k = x = \{0, 1, 2, 3\}$$

$$P(X=0) = \left(\frac{17}{25}\right)^3 = \frac{4913}{15625}$$

$$P(X=1) = C_3^1 \left(\frac{8}{25}\right) \left(\frac{17}{25}\right)^2 = \frac{6936}{15625}$$

$$P(X=2) = C_3^2 \left(\frac{8}{25}\right)^2 \left(\frac{17}{25}\right)^1 = \frac{3264}{15625}$$

$$P(X=3) = C_3^3 \left(\frac{8}{25}\right)^3 \left(\frac{17}{25}\right)^0 = \frac{512}{15625}$$

$$b) E(X) = n \times p = 3 \times \frac{8}{25} = \frac{24}{25}$$

$$V(X) = n \times p \times (1-p) = 0,6528$$

Exercice n° 133

$$A = \begin{cases} 2bN \\ 2bB \end{cases} \quad B = \begin{cases} 2bN \\ 2bB \end{cases}$$

$$1) \text{Card } \Omega = A_5^2 \times A_4^1 = 80$$

$$a) P(A) = \frac{A_3^2 \times A_2^1}{80} = 0,15$$

$$b) P(B) = \frac{A_3^2 A_2^1 + A_2^2 A_2^1}{80} = 0,2$$

$$2) X = \{0, 1, 2, 3, 4\}$$

$$P(X=0) = \frac{A_3^2 A_2^1}{80} = \frac{12}{80}$$

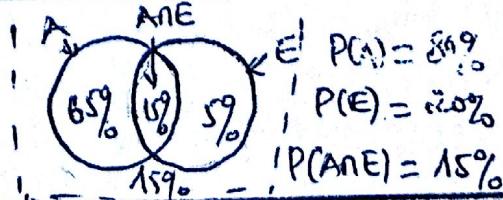
$$P(X=1) = \frac{(A_3^1 A_2^1) \times 2 \times A_2^1 + A_3^2 A_2^1}{80} = \frac{36}{80}$$

$$P(X=2) = \frac{A_2^2 A_2^1 + A_2^1 \times (A_2^1 A_3^1) \times 2}{80}$$

$$P(X=3) = \frac{28}{80}$$

$$P(X=4) = \frac{A_2^2 A_2^1}{80} = \frac{4}{80}$$

Exercice n° 135



$$P(A) = 80\%$$

$$P(E) = 72\%$$

$$P(A \cap E) = 15\%$$

- 1) $P(A/E) = P(A) - P(A \cap E) = 0,65$
- 2) $P(E \setminus A) = P(E) - P(A \cap E) = 0,05$
- 3) $P(\overline{A \cup B}) = 1 - P(A \cup B) = 0,15$

Exercice n° 136

P X	0	0	$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{2\pi}{3}$
0	0	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
0	0	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	0	0
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	0	0
$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	0	0	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$
$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	0	0	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$

$$X = \left\{ -\frac{\sqrt{3}}{2}; 0; \frac{\sqrt{3}}{2} \right\}$$

$$2) P(X = -\frac{\sqrt{3}}{2}) = \frac{4}{36}$$

$$P(X = 0) = \frac{12}{36}$$

$$P(X = \frac{\sqrt{3}}{2}) = \frac{20}{36}$$

$$3) E(X) = \frac{2\sqrt{3}}{9}, \quad V(X) = \frac{19}{54}$$

Exercice n° 137

5 bagues
2 colliers
3 montres

$$\text{Comb} S = C_10^4$$

$$P(A) = \frac{C_3^2 C_7^1}{C_{10}^4} = 0,03$$

$$P(B) = \frac{C_2^1 C_8^3 + C_2^2 C_8^2}{C_{10}^4} = \frac{2}{3} = 0,67$$

$$P(C) = \frac{C_5^2 C_5^2}{C_{10}^4} = 0,47$$

Exercice n° 138

$\{6bB \quad \text{et} \quad 4bN\}$. Comb S = C_{10}^3

$$a) X = \{3; 4; 5; 6\}$$

$$P(X = 3) = \frac{C_6^3}{C_{10}^3} = \frac{1}{6}$$

$$P(X = 4) = \frac{C_6^2 C_4^1}{C_{10}^3} = \frac{1}{2}$$

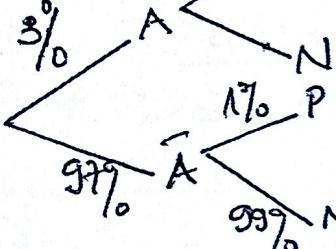
$$P(X = 5) = \frac{C_6^1 C_4^2}{C_{10}^3} = \frac{3}{10}$$

$$P(X = 6) = \frac{C_4^3}{C_{10}^3} = \frac{1}{30}$$

$$b) E(X) = \frac{21}{5}, \quad V(X) = \frac{14}{25}$$

Exercice n° 139

$$1) \begin{array}{c} 97\% \quad P \\ \diagdown \quad \diagup \\ 3\% \quad A \quad \bar{A} \\ \diagup \quad \diagdown \\ 1\% \quad P \quad 99\% \quad N \end{array}$$



$$2) a) P_p(A) = \frac{3}{100} \times \frac{95}{100} = 0,0285$$

$$b) P_N(\bar{A}) = \frac{97}{100} \times \frac{99}{100} = 0,9603$$

$$c) P(P) = \frac{3}{100} \times \frac{95}{100} = 0,0382$$

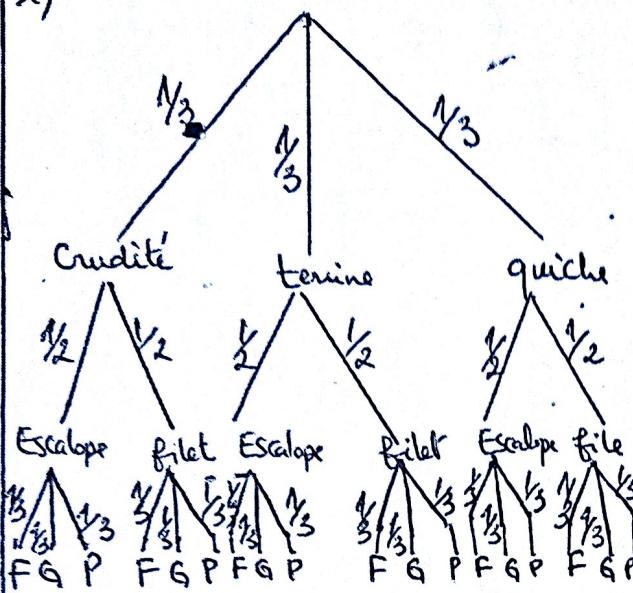
$$d) P(N) = \frac{3}{100} \times \frac{5}{100} + \frac{97}{100} \times \frac{99}{100} = 0,9618$$

$$3) P_p(\bar{A}) = \frac{P(\bar{A} \cap P)}{P(P)} = 0,25.$$

$$P_N(\bar{A}) = \frac{P(\bar{A} \cap N)}{P(N)} = 0,7798$$

Exercice n° 140

1)



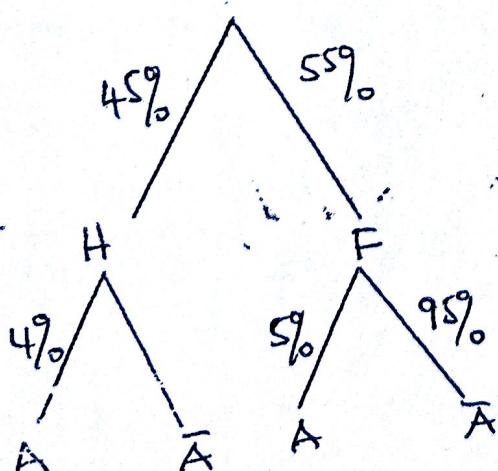
$$2) P(A) = \left[\left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{3} \right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3} \right) \right] \times 3$$

$$P(A) = \frac{1}{3}$$

$$P(B) = \left(\frac{1}{3} \times \frac{1}{2} \right) \times 3 = \frac{1}{2}$$

$$P(C) = \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3} \right) \times 3 = \frac{1}{6}$$

$$P(D) = \left(\frac{1}{3} \times \frac{2}{3} + \frac{1}{3} \times \frac{2}{3} \right) \times 2 = \frac{8}{9}$$

Exercice n° 142

$$P(A) = \frac{45}{100} \times \frac{4}{100} + \frac{55}{100} \times \frac{5}{100}$$

$$P(A) = 0,0455$$

$$2) P_A(H) = \frac{P(A \cap H)}{P(A)} = \frac{\frac{45}{100} \times \frac{4}{100}}{\frac{91}{2000}} = \frac{91}{2000}$$

$$3) P_A(F) = \frac{P(A \cap F)}{P(A)}$$

Exercice n° 143

$$\frac{P_1}{1} = \frac{P_2}{2} = \frac{P_3}{3} = \frac{P_4}{4} = k$$

$$P_1 + P_2 + P_3 + P_4 = 1$$

$$k + 2k + 3k + 4k = 1 \Rightarrow k = \frac{1}{10}$$

$$P_1 = \frac{1}{10}; P_2 = \frac{2}{10}; P_3 = \frac{3}{10}$$

$$P_4 = \frac{4}{10}$$

X	1	2	3	4
P(X=x_i)	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$

SUITES NUMÉRIQUES

Exercice n°1

1) $U_{n+1} - U_n < 0 \quad \forall n \in \mathbb{N}$, alors (U_n) est décroissante.

2) $V_{n+1} - V_n = -4n+3 \quad \forall n \in \mathbb{N}^*$ alors (V_n) est décroissante.

3) $W_{n+1} - W_n = \frac{-6n+6}{(n+5)(n+1)} \leq 0 \quad \forall n \geq 1$ alors (W_n) est décroissante.

Exercice n°2

$$1) U_n = \frac{3n-1}{n+4} = 3 - \frac{13}{n+4}$$

$$n \geq 0 \Rightarrow n+4 \geq 4 \quad 0 \leq \frac{1}{n+4} \leq \frac{1}{4}$$

$$- \frac{13}{4} \leq - \frac{13}{n+4} \leq 0$$

$$3 - \frac{13}{4} \leq U_n \leq 3 \Rightarrow - \frac{1}{4} \leq U_n \leq 3$$

d'où (U_n) est majorée par 3 et minorée par $-\frac{1}{4}$.

2) $U_0 = 3 < 4$ vraie

$$U_1 = -U_0^2 + 4 = -12 < 4$$
 vraie

Supposons que $U_n < 4$ et venions que $U_{n+1} < 4$.

$$-U_n^2 < 0 \Rightarrow -U_n^2 + 4 < 4 \Rightarrow U_{n+1} < 4$$

alors (U_n) est majorée par 4

Exercice n°3

$$1) U_n = U_0 + (n-0) \times r = -2 + \frac{1}{2}n$$

$$S_n = \left(\frac{U_0 + U_n}{2} \right) (n+1) = \frac{(n-8)(n+1)}{4}$$

$$\lim U_n = +\infty, \lim S_n = +\infty$$

Exercice n°4

$$1) a) V_n = V_0 \times q^n = -\frac{3^n}{2}$$

$$b) S_n = V_0 \left(\frac{1-q^n}{1-q} \right) = \frac{1-3^n}{4}$$

$$c) \lim_{n \rightarrow +\infty} V_n = -\infty \quad \lim_{n \rightarrow +\infty} S_n = -\infty$$

$$2) Q_n = 3 \left(\frac{1}{3} \right)^n = \frac{1}{3^{n-1}}$$

$$S_n = \frac{9}{2} \left[1 - \left(\frac{1}{3} \right)^n \right]$$

Exercice n°5

$$U_0 = -\frac{3}{5}; \quad U_1 = -\frac{2}{3}; \quad U_2 = -\frac{1}{2}; \quad U_3 = -1$$

$U_4 = 0$ alors (U_n) est définie sur \mathbb{N} .

Exercice n°7

$$1) U_0 < 3; \quad U_1 = \frac{9}{8} \leq 3$$

supposons que $U_n \leq 3 \quad \forall n \in \mathbb{N}$ et démontrons que $U_{n+1} \leq 3$.

$$-U_n > -3 \Rightarrow 6 - U_n > 3$$

$$\frac{1}{6-U_n} \leq \frac{1}{3} \Rightarrow U_{n+1} \leq 3.$$

d'où $U_n \leq 3$ et (U_n) est majorée par 3.

$$2) U_{n+1} - U_n = \frac{(U_n - 3)^2}{6-U_n} \geq 0$$

d'où (U_n) est croissante.

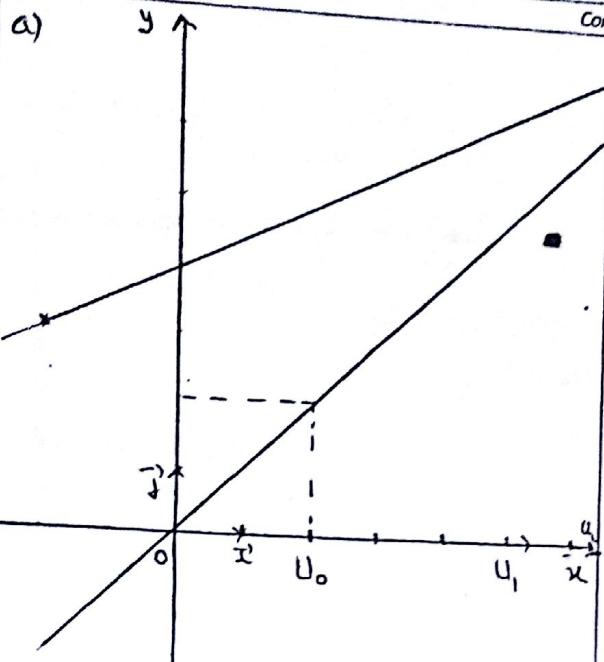
Exercice n°8

1) (U_n) est une suite arithmétique de raison $\frac{3}{2}$ et de premier terme -3 , donc $U_n = U_0 + (n-0) \times r = -3 + \frac{3}{2}n$

$$2) \sum_{k=0}^{25} U_k = U_0 + (1 + \dots + 25) \frac{(U_0 + U_{25})}{2} = \frac{(U_0 + U_{25})(25+1)}{2}$$

$$\sum_{k=0}^{25} U_k = -\frac{1131}{2}.$$

Corrigés	
<u>Exercice n° 9</u>	
1) (U_n) est une suite géométrique de raison 2 et de premier terme $U_0 = 1$ d'où $U_n = 2^n$.	Suite géométrique de raison $q = \frac{2}{3}$ et de premier terme $U_0 = 1$ d'où $U_n = 3 - \left(\frac{2}{3}\right)^n$
2) a) $U_n = \ln(U_n) \Rightarrow U_{n+1} = \ln(U_{n+1})$.	2) $U_n = -\left(\frac{2}{3}\right)^n$ et $U_n = 3 - \left(\frac{2}{3}\right)^n$
$U_{n+1} = U_n + \ln 2$ d'où (U_n) est une suite arithmétique de raison $\ln 2$ et de premier terme $U_0 = \ln(U_0) = 0$	3) $S_n' = U_0 \left(1 - q^{n+1}\right) = -3 \left[1 - \left(\frac{2}{3}\right)^{n+1}\right]$
b) $U_n = U_0 + r \times n = n \ln 2$	4) $S_n = S_n' + \sum_{k=0}^n 3 = -3 \left[1 - \left(\frac{2}{3}\right)^{n+1}\right] + 3(n+1)$
$U_n \geq 10 \Rightarrow n \ln 2 \geq 10 \Rightarrow n \geq 14,49$ d'où $n_0 = 14$	5) $\lim U_n = 3$ et $\lim S_n = +\infty$.
<u>Exercice n° 10</u>	<u>Exercice n° 12</u>
$U_0 = 0$; $U_0 + U_1 + U_2 + \dots + U_n = \frac{1}{3}(n^2 + n)$	1) $U_{n+1} - U_n = -2 \Rightarrow$ S. A. ($r = -2$; $U_0 = 3$) $S_n = (n+1)(3-n)$
1) $U_0 + U_1 = \frac{1}{3}(1^2 + 1) \Rightarrow U_1 = \frac{2}{3}$	2) $N_{n+1} = e^2 V_n \Rightarrow$ S. G. ($q = e^2$; $V_0 = e^3$) $S_n = e^3 \left(\frac{1 - e^{-2n-2}}{1 - e^{-2}} \right)$
$U_0 + U_1 + U_2 = \frac{1}{3}(2^2 + 2) \Rightarrow U_2 = \frac{4}{3}$	<u>Exercice n° 13</u>
2) $\underbrace{U_0 + U_1 + U_2 + \dots + U_{n-1}}_{\frac{1}{3}[(n-1)^2 + (n-1)]} + U_n = \frac{1}{3}(n^2 + n)$	$U_0 = 1$; $U_{n+1} = \frac{2U_n}{U_n + 2}$, $\forall n \in \mathbb{N}$
$\Rightarrow U_n = \frac{2n}{3}$	1) $U_n = \frac{1}{U_n}$ et $U_{n+1} = \frac{U_n + 2}{2U_n}$
$U_{n+1} = \frac{2(n+1)}{3}$	$U_{n+1} - U_n = \frac{1}{2}$ alors (U_n) est une suite arithmétique de raison $\frac{1}{2}$ et de premier terme $U_0 = 1$.
3) $U_{n+1} - U_n = \frac{2}{3}$ alors (U_n) est une suite arithmétique de raison $\frac{2}{3}$ et de premier terme $U_0 = 0$.	2) $U_n = 1 + \frac{1}{2}n$ et $U_n = \frac{2}{n+2}$
<u>Exercice n° 11</u>	3) $S_n' = \left(\frac{U_0 + U_n}{2}\right)(n+1) = \frac{(n+4)(n+1)}{4}$
1) $U_0 = 1$ $U_{n+1} = \frac{2}{3}U_n + \frac{1}{3}$, $\forall n \in \mathbb{N}$	4) $\lim U_n = 0$ alors (U_n) est convergente.
1) $V_{n+1} = U_{n+1} - 3 = \frac{2}{3}(U_n - 3)$	<u>Exercice n° 14</u>
$V_{n+1} = \frac{2}{3}V_n$ alors (V_n) est une	$U_0 = 2$; $U_{n+1} = \frac{1}{2}U_n + 4$, $\forall n \in \mathbb{N}$
	1) (D): $y = \frac{1}{2}x + 4$
	Δ : $y = x$



Corrigés

suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $U_0 = 5$.

2) $U_n = 5 \left(\frac{1}{3}\right)^n$ et $U_n = 1 + 5 \left(\frac{1}{3}\right)^n$

3) $\lim U_n = 0$ et $\lim U_n = 1$

4) $S_n = \frac{25}{4} \left[1 - \left(\frac{1}{3}\right)^{n+1}\right]$

$S_n' = \frac{25}{4} \left[1 - \left(\frac{1}{3}\right)^{n+1}\right] + (n+1)$

Exercice n° 17

$U_n = -3 \left(\frac{2}{3}\right)^n$ et $S_{10} = U_3 \frac{\left(1 - \left(\frac{2}{3}\right)^{10}\right)}{1 - \frac{2}{3}}$

Exercice n° 18

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{2U_n - 1}{2U_n + 5}, \quad \forall n \in \mathbb{N} \end{cases}$$

1) $U_n = \frac{2U_n + 1}{U_n + 1}$ $U_{n+1} = \frac{\frac{4U_n - 2}{2U_n + 5} + 1}{\frac{2U_n - 1}{2U_n + 5} + 1}$

$U_{n+1} = \frac{3}{4} U_n$ alors (U_n) est une suite géométrique de raison $\frac{3}{4}$ et de premier terme $U_0 = \frac{3}{2}$.

2) $U_n = \frac{3}{2} \left(\frac{3}{4}\right)^n$ et $U_n = \frac{1 - U_n}{U_n - 2}$

3) $S_n = 6 \left[1 - \left(\frac{3}{4}\right)^{n+1}\right]$

4) $\lim U_n = -\frac{1}{2}$

Exercice n° 19

1) $V_{n+1} = \frac{1}{3} V_n$; 2) $U_n = \frac{1}{4} V_n + \frac{6n-15}{4}$
avec $V_n = 19 \left(\frac{1}{3}\right)^n$.

4) $T_n = \frac{87}{8} \left(1 - \frac{1}{3^{n+1}}\right)$

$W_n = \frac{n+1}{8} \left(\frac{2n-15}{4}\right)$ $U_n = T_n + W_n$

Exercice n° 21

a) $U_1 = \frac{1}{2} U_0 + 4 = 5$

$U_2 = \frac{1}{2} U_1 + 4 = \frac{13}{2}$ $U_3 = \frac{29}{4}$

c) (U_n) est croissante

2) $U_{n+1} = \frac{1}{2} U_n$ alors (U_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $U_0 = -6$.

b) $U_n = -6 \left(\frac{1}{2}\right)^n$ et $U_n = 8 - 6 \left(\frac{1}{2}\right)^n$

c) $\lim U_n = 0$ et $\lim U_n = 8$

Exercice n° 15

1) $U_{n+1} = \frac{2}{5} V_n$; $V_n = \frac{1}{3} \left(\frac{2}{5}\right)^n$

$U_n = U_n + \frac{5}{3} = \frac{1}{3} \left(\frac{2}{5}\right)^n + \frac{5}{3}$

3) $S_n' = (V_0 + \frac{5}{3}) + (V_1 + \frac{5}{3}) + \dots + (V_n + \frac{5}{3})$

$S_n' = S_n + \frac{5}{3} (n-1)$

Exercice n° 16

a) $U_0 = 6$ $U_{n+1} = \frac{1}{3} U_n + \frac{4}{3}$

$U_{n+1} = \frac{1}{3} U_n$ alors (U_n) est une

2) $U_1 = \frac{1}{2} > 0$, supposons que $U_9 > 0$
 $\forall n \in \mathbb{N}^*$, on a $\frac{q+1}{q} > 0$ et $U_{n+1} = \frac{q+1}{2q} U_n$
alors $U_{n+1} > 0$ donc $\forall n \in \mathbb{N}^*$, $U_n > 0$

3) $V_n = \left(\frac{1}{2}\right)^n$ et $U_n = n \times \left(\frac{1}{2}\right)^n$

4) $\lim U_n = 0$

Exercice n° 22

a) $U_1 = \frac{1}{2}$; $U_2 = 1$; $U_3 = \frac{1}{4}$

b) $U_{2p} = \frac{1}{2p-1}$; $U_{2p+1} = \frac{1}{2p+2}$

$$U_{2p+2} = \frac{1}{2p+1}$$

c) $U_2 - U_1 = \frac{1}{2} > 0$; $U_3 - U_2 = -\frac{3}{4} < 0$

$$U_{2p+1} - U_{2p} = \frac{-3}{(2p+2)(2p-1)} < 0 \text{ d'où}$$

(U_n) n'est ni croissante, ni décroissante

$$2) U_{2p+2} - U_{2p} = \frac{-2}{(2p+1)(2p-1)} < 0 \text{ alors}$$

(U_{2p}) est décroissante.

Exercice n° 23

2) a) $n=1 \Rightarrow U_1 \neq -1$. Supposons que $U_n \neq -1$ et $\forall n \geq 1$, montrons que $U_{n+1} \neq -1$; $U_{n+1} = 5 - \frac{12}{U_n + 3}$

$$U_n + 3 \neq 2; -\frac{12}{U_n + 3} \neq -6 \Rightarrow U_{n+1} \neq -1$$

la différence est vraie à l'ordre $n+1$ alors $\forall n \geq 1$; $\Rightarrow U_n \neq -1$.

$$b) V_{n+1} = \frac{1}{3} V_n; c) U_n = \frac{V_n + 3}{V_n - 1}$$

d) $\lim U_n = -3$.

Exercice n° 24

a) $U_n + V_n = 2^n$ et $U_n - V_n = -4n + 3$

$$b) \sum_{p=0}^n U_p = 2^n - n^2 + \frac{n}{2} + 1$$

$$\sum_{p=0}^n V_p = 2^n + n^2 - \frac{n}{2} - 2$$

Exercice n° 25

$$2) V_{n+1} = \frac{5}{3} V_n; V_n = \frac{5}{2} \left(\frac{3}{5}\right)^{n-1}$$

$$U_n = \frac{1}{2} \left(\frac{3}{5}\right)^{n-1} + \frac{1}{2}$$

Exercice n° 26

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{U_n - 1}{U_n + 3} \end{cases}$$

$$1) U_1 = 0; U_2 = -\frac{1}{3}; U_3 = -\frac{1}{2}$$

$$U_4 = -\frac{3}{5} \quad \dots$$

$$2) U_n > -1; U_0 > -1; U_n > -1$$

Supposons que $U_n > -1$ et démontrons que $U_{n+1} > -1$.

$$U_n > -1 \Rightarrow U_n - 1 > -2 \Rightarrow U_n + 3 > 2$$

$$\frac{U_n - 1}{U_n + 3} > -1 \Rightarrow U_{n+1} > -1 \text{ d'où } U_n > -1.$$

3) $U_{n+1} - U_n = \frac{1}{2}$ alors (U_n) est une suite arithmétique de raison $\frac{1}{2}$ et de première terme $\frac{1}{2}$.

$$4) V_n = \frac{1}{2}(n+1) \text{ et } U_n = \frac{1 - V_n}{V_n} = \frac{1 - \frac{1}{2}(n+1)}{\frac{1}{2}(n+1)} = \frac{1 - \frac{1}{2}n - \frac{1}{2}}{\frac{1}{2}n + \frac{1}{2}} = \frac{1 - n}{n + 1}$$

Exercice n° 27

$$U_0 = 1 \text{ et } U_1 = 4; U_{n+2} = -3U_{n+1} + 4U_n$$

1) $V_n = U_{n+1} - U_n = -4V_n$ alors (V_n) est une suite géométrique de raison -4 et de premier terme $V_0 = 4$, $V_0 = 3$

$$2) V_n = 3(-4)^n$$

$$3) S_n = 3 \left(\frac{1 - q^n}{1 - q} \right) = \frac{3}{5} \left[1 - (-4)^n \right]$$

$$V_0 = U_1 - U_0$$

$$V_1 = U_2 - U_1$$

$$\vdots$$

$$V_{n+1} = U_{n+2} - U_{n+1}$$

$$S_n = U_n - U_0 \Rightarrow U_n = S_n + U_0$$

$$U_n = \frac{3}{5} [1 - (-4)^n] + 1$$

5) $\lim U_n = \pm \infty$ alors (U_n) est divergente.

Exercice n° 28

$$\left\{ \begin{array}{l} U_0 = 10 \\ U_{n+1} = \frac{U_n^2 + 3U_n + 6}{U_n - 1} \end{array} \right.$$

4) $U_n > 3$; $U_0 = 10 > 3$; $U_1 = \frac{136}{9} > 3$
supposons que $U_n > 3$ et montrons que $U_{n+1} > 3$.

$$U_n^2 > 9 \Rightarrow U_n^2 + 6 > 15 \Rightarrow U_n^2 + 3U_n + 6 > 24$$

$$U_n - 1 > 2; \frac{U_n^2 + 3U_n + 6}{U_n - 1} > 12 > 3$$

d'où $U_n > 3 \ \forall n \in \mathbb{N}^*$

$$2) U_{n+1} - U_n = -\frac{2U_n + 6}{U_n - 1} \leq 0$$

alors (U_n) est décroissante et majorée par 3 alors (U_n) est convergente et $\lim U_n = 3$.

Exercice n° 29

$$1) \alpha = \frac{1}{3}; 2) V_n = \frac{5}{3}(2)^{n-1}$$

$$S_n = \frac{5}{3}(2^n - 1)$$

$$3) U_n = V_n + \frac{1}{3} \Rightarrow S_n' = S_n + \frac{n}{3}$$

Exercice n° 30

$$\left\{ \begin{array}{l} U_0 = 1 \\ U_{n+1} = \frac{3U_n + 4}{U_n + 3} \end{array} \right. ; \forall n \in \mathbb{N}$$

$$1) U_1 = \frac{7}{4}; U_2 = \frac{37}{19}; U_3 = \frac{187}{94}$$

(U_n) est croissante et majorée; elle admet une limite.

$$a) 0 \leq U_0 \leq 2; 0 \leq U_1 \leq 2$$

Supposons que $0 \leq U_n \leq 2$ et montrons que $0 \leq U_{n+1} \leq 2$

$$U_{n+1} = 3 - \frac{5}{U_n + 3}; 0 \leq U_n \leq 2$$

$$- \frac{1}{3} \leq -\frac{5}{U_n + 3} \leq -1$$

$$0 \leq \frac{4}{3} \leq U_{n+1} \leq 2 \text{ d'où } 0 \leq U_n \leq 2$$

$$b) U_{n+1} - U_n = \frac{(U_n - 2)(U_n + 2)}{U_n + 3}$$

$$U_n + 2 > 0 \text{ et } U_n + 3 > 0$$

$$U_n \leq 2 \Rightarrow U_n - 2 \leq 0$$

$$U_{n+1} - U_n > 0 \text{ d'où } (U_n) \text{ est croissante}$$

3) (U_n) est croissante et majorée par 2 alors (U_n) est convergente.
d'où $\lim U_n = 2$.

Exercice n° 31

$$1) t_n = e^{\frac{2n+1}{n+1}} \Rightarrow U_{n+1} = e^{2t_n}$$

$$2) a) S_{0,n} = \frac{e - e^{\frac{2n+3}{n+2}}}{1 - e^{\frac{1}{n+2}}}; c) S_{0,n} > 10^6$$

$$n = 4$$

$$3) V_0 + V_1 + \dots + V_n = (n+1)^2$$

$$U_0 \times U_1 \times \dots \times U_n = e^{(n+1)^2}$$

Exercice n° 32

$$\left\{ \begin{array}{l} U_0 = 1 \\ U_{n+1} = \frac{1}{2}U_n + 2n - 1 \end{array} \right.$$

$$1) U_1 = -\frac{1}{2}; U_2 = \frac{3}{4} \text{ et } U_3 = \frac{27}{8}$$

$U_3 > U_2 > U_1$, supposons que $U_n > U_{n-1}$
et montrons que $U_{n+1} > U_n$

$$U_n > U_{n-1} \Rightarrow \frac{1}{2}U_n > \frac{1}{2}U_{n-1}$$

$$\frac{1}{2}U_n + 2n - 1 > \frac{1}{2}U_{n-1} + 2n - 1$$

$U_{n+1} > U_n$ alors (U_n) est croissante $\forall n \in \mathbb{N}^*$

$$2) t_n = 4n - 10 \text{ et } \vartheta_n = U_n - t_n$$

$$\vartheta_{n+1} = U_{n+1} - t_{n+1} = \frac{1}{2}(U_n - 4n + 10)$$

$$\vartheta_{n+1} = \frac{1}{2}(U_n - t_n) \text{ d'où } \vartheta_n = \frac{1}{2}\vartheta_n$$

alors (ϑ_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $\vartheta_0 = 11$.

$t_{n+1} - t_n = 4$ alors (t_n) est une suite arithmétique de raison 4 et de premier terme $t_0 = -10$.

$$3) U_n = \vartheta_0 \times q^n = 11 \times \left(\frac{1}{2}\right)^n = \frac{11}{2^n}$$

$$U_n = \vartheta_n + t_n = \frac{11}{2^n} + 4n - 10$$

$$\lim_{n \rightarrow +\infty} U_n = +\infty.$$

$$4) S_n = \vartheta_0 + \vartheta_1 + \dots + U_n$$

$$T_n = t_0 + t_1 + \dots + t_n$$

$$W_n = \vartheta_0 + \vartheta_1 + \dots + \vartheta_n$$

$$T_n = \frac{n+1}{2} (T_0 + T_n) = (n+1)(2n-10)$$

$$W_n = \vartheta_0 \left(\frac{1 - q^{n+1}}{1 - q} \right) = 22 \left(1 - \frac{1}{2^{n+1}} \right)$$

$$S_n = 22 \left[1 - \frac{1}{2^{n+1}} \right] + (n+1)(2n-10)$$

Exercice n° 33

$$U_0 = a \text{ et } U_{n+1} = \frac{4U_n - 1}{U_n + 2}$$

$$a) U_0 = U_1 \Rightarrow \frac{4U_0 - 1}{U_0 + 2} = U_0$$

$$U_0^2 - 2U_0 + 1 = 0 \Rightarrow (U_0 - 1)^2 = 0$$

$$U_0 = 1.$$

$$2) U_{n+1} - U_n = -\frac{(U_n - 1)^2}{U_n + 2}$$

pour $a > 1 \Rightarrow U_{n+2} > 0$ et $U_n - 1 > 0$
alors $U_{n+1} - U_n < 0$ d'où (U_n) décroît
et majorée car $U_n \leq U_{n-1} \leq \dots \leq U_1 \leq U_0$
 $\lim_{n \rightarrow +\infty} U_n = 1$.

Exercice n° 34

$$\begin{cases} U_1 = 2 \\ U_{n+1} = 2U_n - \frac{1}{3} \end{cases} \quad \forall n \in \mathbb{N}^*$$

$$1) V_n = U_n - a \Rightarrow V_{n+1} = 2V_n - \frac{1}{3} - a$$

$$V_{n+1} = 2V_n + a - \frac{1}{3} \Rightarrow a - \frac{1}{3} = 0$$

$$a = \frac{1}{3} \text{ et } V_n = 2V_n.$$

(V_n) est une suite géométrique de raison 2 et de premier terme $V_1 = \frac{5}{3}$

$$2) V_n = V_1 \times 2^{n-1} = \frac{5}{3} \times 2^{n-1}$$

$$U_n = \frac{5 \times 2^{n-1} - 1}{3}$$

$$3) S_n = U_1 + U_2 + \dots + U_n$$

$$= \sum_{k=1}^n V_k + \sum_{k=1}^n \frac{1}{3}$$

$$= \frac{5}{3} \left(\frac{1 - 2^n}{1 - 2} \right) + \frac{1}{3} n$$

$$S_n = -\frac{5}{3}(1 - 2^n) + \frac{n}{3}$$

$$4) \lim U_n = +\infty \text{ et } \lim S_n = +\infty$$

Exercice n° 35

$$U_0 = 2 \text{ et } U_{n+1} = \frac{1}{2}U_n - 2; V_n = U_n + a$$

$$a) V_{n+1} = \frac{1}{2}V_n + \frac{2}{3}a - 2 \Leftrightarrow \frac{2}{3}a - 2 = 0 \Rightarrow a = 3.$$

$$b) V_n = V_0 \times q^n = 5 \times \left(\frac{1}{3}\right)^n$$

$$U_n = 5\left(\frac{1}{3}\right)^n - 3$$

$$2) \lim U_n = -3 \text{ et } \lim \theta_n = 0$$

$$3) S_n = V_0 + V_1 + \dots + V_n$$

$$= V_0 \left[\frac{1 - 9^{n+1}}{1 - 9} \right] = 5 \left(\frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} \right)$$

$$S_n = \frac{15}{2} \left[1 - \left(\frac{1}{3}\right)^{n+1} \right]$$

$$T_n = S_n - 3(n+1)$$

Exercice n° 36

$$1) U_0 = U_1 \Rightarrow U_1 = U_2 = U_3$$

(U_n) est constante de valeur U_0

$$2) a) V_n = -\frac{1}{4} V_{n-1} \text{ et } V_1 = U_1 - U_0$$

$$c) \lim U_n = \frac{U_0 + 4U_1}{5}$$

$$d) U_n = \sum_{p=1}^n U_p + U_0 = U_0 + \frac{4}{5} (U_1 - U_0) \left(1 - \left(\frac{1}{4}\right)^n \right)$$

Exercice n° 37

$$1) U_1 = \frac{2}{3}; \quad U_2 = \frac{5}{6}$$

$$2) b) V_{n+1} = \frac{1}{2} V_n$$

$$d) S_n = \frac{1}{3} \left[4 - 4 \left(\frac{1}{2}\right)^{n+1} + \frac{n(n+1)}{2} \right]$$

Exercice n° 38

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{4U_n}{1+U_n} \end{cases} \quad \forall n \in \mathbb{N}.$$

$$1) a) U_1 = 2; \quad U_2 = \frac{8}{3}$$

$$b) 0 \leq U_n < 3 \quad \forall n \in \mathbb{N}$$

$$0 \leq U_0 < 3$$

$$0 \leq U_1 < 3$$

Supposons que $0 \leq U_n < 3$ et montrons que $0 \leq U_{n+1} < 3$.

$$0 \leq U_n < 3 \quad 0 \leq 4U_n < 12$$

$$1 < 1+U_n < 4 \Leftrightarrow 0 < \frac{4U_n}{1+U_n} < \frac{12}{4}$$

$0 \leq U_{n+1} < 3$ d'où $\forall n \in \mathbb{N}, 0 \leq U_n < 3$

$$2) a) \theta_n = \frac{U_n - 3}{U_n} \quad \theta_{n+1} = \frac{1}{4} \theta_n$$

$$b) \theta_n = -2 \left(\frac{1}{4}\right)^n = -\frac{1}{2^{n-1}}$$

$$U_n = \frac{-3}{U_{n-1}} = \frac{3}{1 + \frac{1}{2^{n-1}}}$$

$$c) \lim U_n = 3$$

$$3) W_n = \frac{3}{U_n} \text{ et } S_n = \sum_{k=0}^n W_k$$

$$a) W_n = \frac{3}{U_n} = 3 \left(1 - \frac{U_n}{3} \right) = 1 - \theta_n$$

$$b) S_n = \sum_{k=0}^n 1 - \sum_{k=0}^n \theta_k$$

$$= n+1 - 2 \left(1 - \frac{1 - \left(\frac{1}{4}\right)^{n+1}}{\frac{3}{4}} \right)$$

$$S_n = n+1 - \frac{8}{3} \left(1 - \left(\frac{1}{4}\right)^{n+1} \right)$$

$$c) \lim \frac{S_n}{n} = 1.$$

Exercice n° 39

$$z_0 = i$$

$$1) z_{n+1} = (1+i\sqrt{3}) z_n + 3i \quad \forall n \in \mathbb{N}$$

$$U_n = z_n + \sqrt{3}$$

$$2) U_{n+1} = (1+i\sqrt{3}) z_n + 3i - \sqrt{3} \text{ or}$$

$$z_n = U_n - \sqrt{3}$$

$$\Rightarrow U_{n+1} = (1+i\sqrt{3})(U_n - \sqrt{3}) + 3i + \sqrt{3}$$

$U_{n+1} = (1+i\sqrt{3})U_n$ alors (U_n) est une suite géométrique de raison $1+i\sqrt{3}$ et de premier terme $U_0 = z_0 + \sqrt{3} = i + \sqrt{3}$.

2) $U_n = (1+i\sqrt{3})^n (i + \sqrt{3})$

alors $z_n = (\sqrt{3} + i)(1+i\sqrt{3})^n - \sqrt{3}$

Exercice n° 40

1) $z' - z_0 = -k e^{i\alpha} (z - z_0)$

$$F(z) = \frac{\sqrt{3}}{2} e^{i\frac{\pi}{6}} z = \frac{1}{4} (3+i\sqrt{3}) z$$

2) a) $z_0 = \sqrt{2} e^{-i\frac{\pi}{4}}$; $z_1 = \frac{\sqrt{6}}{2} e^{-i\frac{\pi}{12}}$

b) a) z_n est une suite géométrique de raison $\frac{1}{4} (3+i\sqrt{3})$ et de premier terme $z_0 = \sqrt{2} e^{-i\frac{\pi}{4}}$

b) $z_n = \left(\frac{\sqrt{3}}{2} e^{i\frac{\pi}{6}}\right)^n z_0 = \sqrt{2} \left(\frac{\sqrt{3}}{2}\right)^n e^{i(n\frac{\pi}{6} - \frac{\pi}{4})}$

4) $r_n = \sqrt{2} \left(\frac{\sqrt{3}}{2}\right)^n$ s.g. ($q = \frac{\sqrt{3}}{2}$; $r_0 = \sqrt{2}$)

$\theta_n = \frac{n\pi}{6} - \frac{\pi}{4}$ s.a. ($r = \frac{\sqrt{3}}{2}$; $\theta_0 = -\frac{\pi}{4}$)

Exercice n° 41

2) a) $V_{n+1} = \ln e + \frac{1}{2} \ln U_n - 2 = \frac{1}{2} V_n$

b) $V_n = \left(\frac{1}{2}\right)^n$ et $U_n = e \times e^{\frac{1}{2}V_n}$

c) $S_n = 2 \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$

d) $\lim U_n = e^2$.

Exercice n° 42

1) $U_n = 2^n$

2) a) $V_{n+1} = 2V_n \Rightarrow V_n = 2^n$

c) $V_0 + V_1 + V_2 + \dots + V_n = 2^n - 1$

d) $U_n - U_0 = 2^n - 1$

3) $U_n = 2^n$ alors la prévision faite en 1 est confirmée.

Exercice n° 43

$\left\{ \begin{array}{l} U_0 = 1 \\ U_{n+1} = \sqrt{2 + (U_n)^2} \end{array} \right. n \geq 0$

1) $V_n = (U_n)^2 \Rightarrow V_{n+1} = 2 + (U_n)^2$

$V_{n+1} = V_n + 2$ alors (V_n) est une suite arithmétique de raison 2 et de premier terme $V_0 = (U_0)^2 = 1$.

2) $V_n = 2n + 1$

3) $U_n = \pm \sqrt{V_n} = \pm \sqrt{1+2n}$

Exercice n° 44

$\left\{ \begin{array}{l} U_0 = 2 \\ U_n = \frac{1}{2} U_{n-1} - 1 \end{array} \right. \forall n \in \mathbb{N}^*$

1) a) $V_{n+1} = U_{n+1} + 2 = \frac{1}{2} V_n$ alors (V_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme 4.

b) $V_n = 4 \left(\frac{1}{2}\right)^n \Rightarrow U_n = 4 \left(\frac{1}{2}\right)^n - 2$

2) $\lim U_n = -2$

3) $A_n = V_0 + V_1 + \dots + V_n = 8 \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$

$B_n = U_0 + U_1 + \dots + U_n = A_n - \sum_{k=0}^n 2$

$B_n = 8 \left[1 - \left(\frac{1}{2}\right)^{n+1}\right] - 2(n+1)$

$\lim B_n = -\infty$

Exercice n° 45

1) $a_n = \frac{n^2}{4} + \frac{1}{4}$

$$2) V_{n+1} = 3V_n$$

$$U_n = \frac{1}{4} \times 3^n + \frac{n^2}{2} + \frac{1}{4}$$

Exercice n° 46

$$\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{5U_n - 1}{U_n + 3} \end{cases}$$

$$1) U_0 \neq 1, U_1 = \frac{9}{5} \neq 1$$

Supposons $U_n \neq 1$ et montrons

$$U_{n+1} \neq 1. \text{ Si } U_n \neq 1 \Rightarrow 5U_n - 1 \neq 4$$

$$U_n \neq 1 \Rightarrow U_n + 3 \neq 4$$

$$\frac{5U_n - 1}{U_n + 3} \neq 1 \Rightarrow U_{n+1} \neq 1 \text{ d'où } U_{n+1} \neq 1$$

$$2) a) \vartheta_n = \frac{1}{U_{n-1}} ; \vartheta_{n+1} = \frac{U_n - 1}{4(U_{n-1})}$$

$\vartheta_{n+1} - \vartheta_n = \frac{1}{4}$, alors (ϑ_n) est une suite arithmétique de raison $\frac{1}{4}$ et de premier terme $\vartheta_0 = 1$

$$b) \vartheta_n = \frac{1}{4}n + 1$$

$$3) a) U_n = \frac{\vartheta_n + 1}{\vartheta_n} \Rightarrow U_n = \frac{n+8}{n+4}$$

$$b) \lim U_n = 1.$$

Exercice n° 47

$$U_1 = 4 \text{ et } U_{n+1} = \frac{5U_n + 3}{U_n + 3} ; \vartheta_n = \frac{U_n - 3}{U_n + 1}$$

$$1) U_0 \neq -1 ; U_1 = \frac{23}{7} \neq -1$$

Supposons que $U_n \neq -1$ et montrons

$$U_{n+1} \neq -1 ; 5U_n \neq -5$$

$$5U_n + 3 \neq -2$$

$$U_n \neq -1 \Rightarrow U_{n+1} \neq -1$$

$$\frac{5U_n + 3}{U_n + 3} \neq -1 \text{ d'où } U_n \neq -1 \quad \forall n \in \mathbb{N}$$

Corrigés

2) $\vartheta_{n+1} = \frac{1}{3}\vartheta_n$ alors (ϑ_n) est une suite géométrique de raison $\frac{1}{3}$ et de première $\vartheta_1 = \frac{1}{5}$

$$3) \vartheta_n = \frac{1}{5} \left(\frac{1}{3} \right)^{n-1}$$

$$U_n = \frac{3 + \frac{1}{5} \left(\frac{1}{3} \right)^{n-1}}{1 - \frac{1}{5} \left(\frac{1}{3} \right)^{n-1}}$$

$$4) \lim U_n = 3.$$

Exercice n° 48

$$\begin{cases} U_0 = -1 \\ U_{n+1} = \frac{U_n}{1-U_n}, n \in \mathbb{N}^* \end{cases}$$

$$1) a) U_0 < 0 ; U_1 = -\frac{1}{2} < 0$$

Supposons que $U_n < 0$ et montrons que $U_{n+1} < 0$

$$U_n < 0 \Rightarrow -U_n > 0 \quad 1 - U_n > 1$$

$$\frac{1}{1-U_n} < 1 ; \frac{U_n}{1-U_n} < 0 \Rightarrow U_{n+1} < 0$$

d'où $U_{n+1} < 0$.

$$b) U_{n+1} - U_n = \frac{U_n^2}{1-U_n} > 0$$

$U_{n+1} - U_n > 0$ alors (U_n) est

croissante.

$$2) a) \vartheta_n = \frac{U_{n+2}}{U_n} ; \vartheta_{n+1} = \frac{2-U_n}{U_n}$$

$\vartheta_{n+1} - \vartheta_n = -2$ alors (ϑ_n) est une suite arithmétique de raison -2 et de premier terme $\vartheta_1 = -3$.

$$b) \vartheta_n = -2n - 1 ; U_n = \frac{2}{\vartheta_{n-1}}$$

$$U_n = \frac{-1}{n+1}.$$

$$c) S_n = \frac{-1}{2} (\vartheta_1 + \vartheta_n)$$

Exercice n° 49

1) $W_{n+1} = \frac{1}{12} W_n$ et $W_1 = -11$

$$W_n = \frac{-11}{12^{n-1}}$$

2) $U_{n+1} - U_n = \frac{2}{3} W_n$ alors U_n est décroissante

4) $t_{n+1} = t_n$.

Exercice n° 50

$$U_{n+1} = \sqrt{\frac{1-U_n}{2}} \quad \forall n \in \mathbb{N}$$

1) a) (U_n) est si $1-U_n \geq 0$
 $U_n \leq 1$.

$$U_1 = \sqrt{\frac{1-U_0}{2}} \Leftrightarrow U_0 \geq -1$$

d'où $U_0 \in [-1, 1]$

b) $U_1 = U_0 \Rightarrow 2U_0^2 + U_0 - 1 = 0$

$U_0 = -1$ ou $U_0 = \frac{1}{2}$.

2) $U_0 = \sin \alpha_0$ avec $\alpha_0 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

a) $\alpha_0 = \frac{\pi}{6} \Rightarrow U_0 = \frac{1}{2} \in [-1, 1]$

b) $U_n = \sin \alpha_n \Rightarrow \alpha_{n+1} = \frac{\pi}{4} - \frac{\alpha_n}{2}$

3) $\beta_n = \alpha_n - \frac{\pi}{6}$

4) $\beta_{n+1} = \alpha_{n+1} - \frac{\pi}{6} = \frac{\pi}{4} - \frac{\alpha_n}{2} - \frac{\pi}{6} = -\frac{1}{2}(\alpha_n - \frac{\pi}{6})$

$\beta_{n+1} = -\frac{1}{2} \beta_n$ alors (β_n) est une suite géométrique de raison $-\frac{1}{2}$ et de premier terme $\beta_0 = \alpha_0 - \frac{\pi}{6}$

b) $\beta_n = \beta_0 q^n = (\alpha_0 - \frac{\pi}{6}) \left(-\frac{1}{2}\right)^n$

c) $\beta_n = \alpha_n - \frac{\pi}{6} \Rightarrow \alpha_n = (\alpha_0 - \frac{\pi}{6}) \left(-\frac{1}{2}\right)^n + \frac{\pi}{6}$

$$U_n = \sin \left[\left(\alpha_0 - \frac{\pi}{6} \right) \left(-\frac{1}{2} \right)^n + \frac{\pi}{6} \right]$$

$$U_n = \frac{\sqrt{3}}{2} \sin \left[\left(\alpha_0 - \frac{\pi}{6} \right) \left(-\frac{1}{2} \right)^n \right] + \frac{1}{2} \cos \left[\left(\alpha_0 - \frac{\pi}{6} \right) \left(-\frac{1}{2} \right)^n \right]$$

c) $\lim U_n = \sin \frac{\pi}{6} = \frac{1}{2}$ donc (U_n) est convergente.

Exercice n° 51

1) $U_1 = 0,5 U_0 + 0,25 = 0,75$

$$U_2 = 0,625; \quad U_3 = 0,5625$$

2) $W_n = U_n - 0,5$

a) $W_{n+1} = U_{n+1} - 0,5 = 0,5 U_n - 0,25$

$$W_{n+1} = 0,5 (U_n - 0,5) = 0,5 W_n$$

b) $W_n = 0,5 (0,5)^n$ et $U_n = 0,5 (1+0,5)^n$

3) $\frac{W_{n+1}}{W_n} = 0,5 < 1$ alors (W_n) est décroissante. $U_n = W_n + 0,5$ alors (U_n) l'est aussi.

4) $S_n = 1 - (0,5)^{n+1}$

$$A_n = S_n + 0,5(n+1)$$

Exercice n° 52

$\vartheta_1 = \frac{1}{2}$ et $\vartheta_{n+1} = \frac{n+1}{2n} \vartheta_n$

1) $\vartheta_2 = \frac{1}{2}; \quad \vartheta_3 = \frac{3}{8}; \quad \vartheta_4 = \frac{1}{4}$

2) a) $\vartheta_1 > 0$ $\vartheta_2 > 0$; supposons que $\vartheta_n > 0$ et montrons que $\vartheta_{n+1} > 0$.

$\frac{n+1}{2n} > 0$ $\forall n > 0$ et $\vartheta_n > 0 \Rightarrow \frac{n+1}{2n} \vartheta_n > 0$ alors $\vartheta_{n+1} > 0$ d'où $\vartheta_n > 0$.

b) $\frac{\vartheta_{n+1}}{\vartheta_n} = \frac{n+1}{2n}; \quad \begin{cases} n > 1 \\ n+1 > 2n \end{cases} \Rightarrow \frac{n+1}{2n} < 1$

d'où (ϑ_n) est décroissante

c) (ϑ_n) est décroissante et minorée par 0 ($\vartheta_n > 0$) alors (ϑ_n) est convergente.

$$3) U_n = \frac{U_n}{n} + n > 0$$

Corrigés

$$a) U_{n+1} = \frac{U_{n+1}}{n+1} = \frac{1}{2} \frac{U_n}{n} = \frac{1}{2} U_n$$

$$b) U_n = \frac{1}{2} \times \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^n = \frac{1}{2^n}.$$

$$V_n = n \left(\frac{1}{2}\right)^n$$

$$c) \lim U_n = 0 \quad \lim V_n = \lim \frac{n}{2^n} = \frac{n}{e^{n \ln 2}} \\ \lim V_n = 0.$$

Exercice n° 53

$$\begin{cases} U_0 = \frac{2}{3} \\ U_{n+1} = \frac{1}{2} U_n + \frac{n+2}{2\sqrt{2}} \end{cases}$$

$$1) U_1 = \frac{1}{3} + \frac{1}{\sqrt{2}}; \quad U_2 = \frac{1}{6} + \frac{2}{\sqrt{2}}$$

$$2) V_n = U_n \sqrt{2} - n$$

$$a) V_{n+1} = U_{n+1} \sqrt{2} - n - 1 \\ = \left(\frac{1}{2} U_n + \frac{n+2}{2\sqrt{2}}\right) \sqrt{2} - n - 1 \\ = \frac{\sqrt{2}}{2} U_n + \frac{n+2}{2} - n - 1$$

$$V_{n+1} = \frac{1}{2} V_n + \frac{n}{2} - \frac{n}{2} = \frac{1}{2} V_n$$

$$b) V_n = \frac{2\sqrt{2}}{3} \left(\frac{1}{2}\right)^n \text{ et } U_n = \frac{2}{3} \left(\frac{1}{2}\right)^n + \frac{n}{\sqrt{2}}$$

$$3) S_n = U_0 + U_1 + \dots + U_n \\ = \frac{1}{\sqrt{2}} \left[\sum_{k=0}^n V_k + \sum_{k=0}^n k \right]$$

$$S_n = \frac{4}{3} \left[1 - \left(\frac{1}{2}\right)^{n+1} \right] + \frac{n(n+1)}{2\sqrt{2}}$$

$$4) \lim_{n \rightarrow +\infty} S_n = +\infty.$$

Exercice n° 54

$$1) U_1 = \frac{1}{4}; \quad U_2 = \frac{7}{16}; \quad U_3 = \frac{37}{64}$$

$$V_1 = \frac{7}{4}; \quad V_2 = \frac{25}{16}; \quad V_3 = \frac{91}{64}$$

$$2) S_n = U_n + V_n$$

$$a) S_0 = U_0 + V_0 = 2$$

$$S_1 = 2; \quad S_2 = 2; \quad S_3 = 2$$

la suite (S_n) est constante.

b) $S_0 = 2; \quad S_1 = 2$, supposons que $S_n = 2$ et montrons que $S_{n+1} = 2$

$$S_{n+1} = \frac{3}{4} U_{n+1} + \frac{3}{4} V_{n+1} = \frac{3}{4} (U_n + V_n) + 2$$

$$S_{n+1} = \frac{3S_n + 2}{4} \text{ or } S_n = 2 \Rightarrow S_{n+1} = 2$$

donc $S_n = 2$.

$$3) D_n = V_n - U_n$$

$$a) D_{n+1} = V_{n+1} - U_{n+1} = \frac{3}{4} D_n \text{ et } D_0 = 2.$$

$$b) D_n = 2 \left(\frac{3}{4}\right)^n.$$

$$4) S_n = 2 = V_n + U_n \quad \left\{ \begin{array}{l} D_n = 2 \left(\frac{3}{4}\right)^n = V_n - U_n \end{array} \right.$$

$$S_n + D_n \Rightarrow V_n = 1 + \left(\frac{3}{4}\right)^n$$

$$V_n + U_n = 2 \Rightarrow U_n = 1 - \left(\frac{3}{4}\right)^n.$$

Exercice n° 55

$$1) V_0 = -\ln 2; \quad 2) V_{n+1} = \ln \left(\frac{3}{2} U_n\right)^2$$

$$V_{n+1} = 2V_n;$$

$$3) V_n = -2^n \ln 2; \quad \lim V_n = -\infty$$

$$4) U_n = \frac{2}{3} e^{V_n}$$

$$5) a) S_n = -\left(\frac{1-2^n}{1-2}\right) \ln 2 = (1-2^n) \ln 2$$

$$b) T_n = \frac{2}{3} e^{V_0} \times \frac{3}{2} e^{V_1} \times \dots \times \frac{2}{3} e^{V_{n-1}}$$

$$T_n = \left(\frac{2}{3}\right)^n e^{V_0 + V_1 + \dots + V_{n-1}} = \left(\frac{2}{3}\right)^n S_n$$

Exercice n° 58

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{9}{6-U_n} \end{cases}$$

$$1) \vartheta_1 = \frac{9}{5}; \vartheta_2 = \frac{45}{21} = \frac{15}{7}$$

$$\vartheta_3 = \frac{7}{3}.$$

a) $0 < \vartheta_n < 3$; $0 < \vartheta_0 < 3$
 $0 < \vartheta_1 < 3$; $0 < \vartheta_2 < 3$. Supposons que $0 < \vartheta_n < 3$ et montrons que $0 < \vartheta_{n+1} < 3$.

$$3 < 6 - \vartheta_n < 6 \Rightarrow \frac{9}{6} < \frac{9}{6-\vartheta_n} < \frac{9}{3}$$

$$0 < 1,5 < \vartheta_{n+1} < 3 \text{ d'où } 0 < \vartheta_n < 3.$$

$$b) \vartheta_{n+1} - \vartheta_n = \frac{(3-\vartheta_n)^2}{6-\vartheta_n}$$

$$(3-\vartheta_n)^2 > 0 \quad 6-\vartheta_n > 0 \Rightarrow \vartheta_{n+1} - \vartheta_n > 0$$

alors (ϑ_n) est croissante.

2) (ϑ_n) est bornée car $(0 < \vartheta_n < 3)$ et croissante, alors (ϑ_n) est convergente.

$$3) W_n = \frac{1}{\vartheta_n - 3} \quad W_{n+1} - W_n = -\frac{1}{3} \text{ et}$$

$$W_0 = -\frac{1}{2} \text{ donc } W_n = -\frac{1}{2} - \frac{1}{3}n$$

$$\vartheta_n = \frac{W_{n+1}}{W_n} = \frac{2n-3}{2n+3} \text{ et } \lim \vartheta_n = 1.$$

Exercice n° 60

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{1}{3}U_n + n - 2 \quad \forall n \in \mathbb{N} \end{cases}$$

$$\Rightarrow U_1 = -\frac{5}{3}; \quad U_2 = -\frac{14}{9}$$

$$U_3 = -\frac{14}{27}$$

$$2) a) U_n \geq 4; \quad U_n > 0$$

$U_4 = \frac{67}{81} > 0$; supposons que $U_n > 0$ et montrons que $U_{n+1} > 0$

$$U_n > 0 \Rightarrow \frac{1}{3}U_n > 0 \Rightarrow \frac{1}{3}U_n + n - 2 > 0$$

$$n \geq 4 \Rightarrow n - 2 \geq 2$$

et si $U_n > 0$ et $n \geq 4$.

$$b) U_{n+1} > 0 \Rightarrow \frac{1}{3}U_n + n - 2 > 0$$

$$U_n + 3n - 6 > 0$$

$$n \geq 5 \Rightarrow 3n \geq 15 \Rightarrow 3n - 6 \geq 9$$

$$\Rightarrow n - 2 \geq 3.$$

$$U_n + n - 2 \geq U_n + 3 \Rightarrow U_n \geq n - 3.$$

c) D'après la propriété de comparaison

$$\lim_{n \rightarrow +\infty} (n-3) = +\infty \Rightarrow \lim U_n = +\infty.$$

$$3) S_n = -2U_n + 3n - \frac{21}{2}.$$

$$a) U_{n+1} = -2\left(\frac{1}{3}U_n + n - 2\right) + 3n + 3 = \frac{21}{2}$$

$$= -\frac{2}{3}\left(-\frac{1}{2}U_n + \frac{3}{2}n - \frac{21}{4}\right) + n + 7 - \frac{21}{2}$$

$$U_{n+1} = \frac{1}{3}U_n \text{ et } U_0 = -\frac{25}{2}$$

$$b) U_n = -\frac{25}{2}\left(\frac{1}{3}\right)^n$$

$$U_n = \frac{25}{4}\left(\frac{1}{3}\right)^n + \frac{3}{2}n - \frac{21}{2}.$$

$$c) S_n = \sum_{k=0}^n U_k = \sum_{k=0}^n \left(-\frac{25}{2}\left(\frac{1}{3}\right)^k + \frac{3}{2}k - \frac{21}{2}\right)$$

$$S_n = \frac{25}{8} \left[1 - \left(\frac{1}{3}\right)^{n+1}\right] + \frac{3n(n+1)}{4} - \frac{21(n+1)}{2}$$

Exercice n° 61

$$1) U_0 = \frac{1}{3}$$

$$U_{n+1} = 3U_n + n^2 - n - \frac{1}{2} \quad \forall n \in \mathbb{N}$$

$$2) U_1 = \frac{1}{2}; \quad U_2 = 1$$

$$2) \mathcal{V}_n = 2U_n + n^2$$

$$U_{n+1} = 2U_{n+1} + (n+1)^2 = 6U_n + 3n^2$$

$$\text{or } U_n = \frac{\mathcal{V}_n - n^2}{2} \Rightarrow \mathcal{V}_{n+1} = 3\mathcal{V}_n$$

$$\text{et } \mathcal{V}_0 = \frac{2}{3}.$$

$$3) \mathcal{V}_n = \frac{2}{3} \times 3^n = 2 \times 3^{n-1}$$

$$U_n = 3^{n-1} - \frac{n^2}{2}.$$

$$4) \text{a) } 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$n=1 \Rightarrow 1 = \frac{2 \times 3}{6} = 1$$

$$n=2 \Rightarrow 5 = \frac{2 \times 3 \times 5}{6} = 5$$

$$\text{Supposons que } 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\text{et montrons que } 1^2 + 2^2 + \dots + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

$$1^2 + 2^2 + \dots + n^2 + (n+1)^2 = \frac{n(n+1)(2n+1) + 6(n+1)}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$\text{or } 2n^2 + 7n + 6 = (2n+3)(n+2)$$

$$\text{alors } 1^2 + 2^2 + \dots + n^2 + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

$$\text{d'où } 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

$$b) S_n = \frac{1}{2} \sum_{k=0}^n \mathcal{V}_k - \frac{1}{2} \sum_{k=0}^n k^2.$$

$$S_n = -\frac{1}{6} (1 - 3^{n+1}) - \frac{n(n+1)(2n+1)}{12}.$$

Exercice n° 62

$$B(3-2i); C(5+i); S(0); S(C) = B$$

$$1) \text{a) } z' = az + b, S(0) = 0 \Rightarrow b = 0$$

$$\text{et } S(C) = B \Rightarrow z_B = az_C$$

$$a = \frac{z_B}{z_C} = \frac{1}{2}(1-i) \text{ d'où}$$

$$\text{soit } z' = \frac{1}{2}(1-i)z.$$

$$b) S = \int \frac{dz}{z} = \frac{\sqrt{a}}{2}; \alpha = -\frac{\pi}{4}; z_{SL} = 0$$

$$4) z_D = \frac{1}{2}(1-i)z_C \Rightarrow z_D = 3-2i$$

$$2) S(C) = B_1 \Rightarrow z_1 = \frac{1}{2}(1-i)z_B = \frac{1}{2} - \frac{1}{2}i$$

b) $\frac{z_B - z_{B_1}}{z_0 - z_{B_1}} = -i$ alors $z_B z_{B_1}$ est un triangle rectangle et isocèle en P_{B_1}

$$3) B_0 = B \quad B_{n+1} = S(B_n) \cdot B(z_n).$$

$$a) z_n = \left(\frac{1}{2}\right)^n (1-i)^n z_0$$

$$\text{pour } n=0 \Rightarrow z_0 = z_0$$

$$\text{pour } n=1 \Rightarrow z_1 = \frac{1}{2}(1-i)z_0 = \frac{1}{2}(1-i)z_0$$

Supposons que $z_n = \left(\frac{1}{2}\right)^n (1-i)^n z_0$ et démontrons que $z_{n+1} = \left(\frac{1}{2}\right)^{n+1} (1-i)^{n+1} z_0$

$$z_{n+1} = \frac{1}{2}(1-i)z_n = \frac{1}{2}(1-i)\left[\left(\frac{1}{2}\right)^n (1-i)^n z_0\right]$$

$$= \frac{1}{2}\left(\frac{1}{2}\right)^n (1-i)(1-i)^n z_0$$

$$z_{n+1} = \left(\frac{1}{2}\right)^{n+1} (1-i)^{n+1} z_0 \text{ d'où}$$

$$z_n = \left(\frac{1}{2}\right)^n (1-i)^n z_0.$$

$$b) |B_n| = |z_n| = \left|\left(\frac{1}{2}\right)^n (1-i)^n z_0\right|$$

$$|B_n| = \left(\frac{1}{2}\right)^n (\sqrt{2})^n \sqrt{13}$$

$$c) \lim_{n \rightarrow +\infty} |B_n| = +\infty$$

Exercice n° 64

$$U_n = \int_{0 \rightarrow n} e^{az} dz$$

$$1) U_n = \left[\frac{1}{a} e^{az}\right]_{0 \rightarrow n} = \frac{1}{a} (2n+1)$$

$$2) U_{n+1} - U_n = 1 \text{ et } U_1 = \frac{3}{2}$$

$$3) U_n = e^{Un} \Rightarrow U_{n+1} = e^{Un + \frac{1}{a}(2n+3)}$$

$$\mathcal{V}_{n+1} = e^{U_n} \text{ et } U_n = e^{\frac{1}{a}z}$$

Exercice n° 65

$$\left\{ \begin{array}{l} U_0 = 10 \\ U_{n+1} = f(U_n) \end{array} \right.$$

$$\Rightarrow f(x) = \frac{3x-16}{x-5}$$

1) $\forall n \in \mathbb{N}, U_n \in \mathbb{R}, \exists U_{n-1} \in \mathbb{R}$
et $U_n - 5 \in \mathbb{R}, \Rightarrow U_{n+1} \in \mathbb{R} \setminus \{5\}$

$$2) g(x) = f(x) - x \Rightarrow g'(x) = f'(x) - 1$$

$$\text{et } f'(x) = \frac{1}{(x-5)^2} > 0 \text{ alors } f \text{ est croissante.}$$

Exercice n° 67

$$a) U_0 = 3 > 2, U_1 = \frac{5}{2} > 2$$

Supposons que $U_n > 2$ et montrons que $U_{n+1} > 2$.

$$U_n > 2 \Rightarrow 3U_n > 6 \Rightarrow 3U_n - 4 > 2$$

$$U_n > 2 \Rightarrow U_{n-1} > 1 \Rightarrow \frac{3U_n - 4}{U_{n-1}} > 2$$

d'où $U_{n+1} > 2$ alors $U_n > 2$.

$$b) U_{n+1} - U_n = -\frac{(U_n - 2)^2}{U_n - 1},$$

comme (U_n) est minorée par 2 alors $U_n - 2 \geq 0$ et $U_n - 1 > 0$

$U_{n+1} - U_n < 0$ alors (U_n) est décroissante.

c) (U_n) étant décroissante et minorée par 2, alors elle converge vers 2.

$$2a) U_n = \frac{1}{U_n - 2} \quad \vartheta_{n+1} = \frac{U_n - 1}{U_n - 2}$$

$$\vartheta_{n+1} - \vartheta_n = 1 \quad \text{et} \quad \vartheta_0 = 1$$

$$b) \vartheta_n = n+1 \text{ et } U_n = \frac{2n+3}{n+1}$$

$$3) W_n = \ln U_n$$

$$a) \lim W_n = \ln 2$$

$$b) W_{n+1} - W_n = \ln \left(\frac{U_{n+1}}{U_n} \right) < 0$$

$W_{n+1} - W_n < 0$ alors (W_n) décroît.

comme

$$c) |W_n - \ln 2| \leq b^{-2} \Rightarrow \ln \left(\frac{U_n}{2} \right) \leq b^{-2}$$

Exercice n° 68

$$1) U_1 = \frac{3}{4}; U_2 = \frac{18}{19}$$

$$2) 0 \leq U_n \leq 1$$

$0 \leq U_1 \leq 1, 0 \leq U_2 \leq 1$; supposons que $0 \leq U_n \leq 1$ et montrons que $0 \leq U_{n+1} \leq 1$.

$$3 \leq 2U_n + 3 \leq 5 \text{ et } 4 \leq U_n + 4 \leq 5$$

$$0 \leq \frac{3}{4} \leq U_{n+1} \leq 1 \text{ d'où } 0 < U_n < 1$$

$$U_{n+1} - U_n = \frac{2U_n + 3}{U_n + 4} - U_n = \frac{-(U_n - 3)(U_n + 1)}{U_n + 4}$$

$$U_{n+1} > 0; U_n + 4 > 0 \Rightarrow (U_n - 3) > 2 > 0$$

$U_{n+1} - U_n > 0$ alors (U_n) est croissante.

$$3) a) \vartheta_n = \frac{U_n - 1}{U_n + 3} \text{ et } \vartheta_{n+1} = \frac{1}{5} \vartheta_n \text{ et}$$

$$\vartheta_0 = -\frac{1}{3} \Rightarrow \vartheta_n = -\frac{1}{3} \left(\frac{1}{5} \right)^n$$

$$b) U_n = \frac{3\vartheta_{n+1}}{1 - \vartheta_n} \text{ et } \lim U_n = 1.$$

Exercice n° 69

$$1) I = \int_1^{n+1} (x+1) e^{-x} dx$$

$$U = 1 \quad u = x+1, \quad v = e^{-x} \quad v = -e^{-x}$$

$$I = \left[-(x+1)e^{-x} \right]_1^{n+1} + \int_1^{n+1} e^{-x} dx$$

$$I = -(n+2)e^{-n-1} + (n+1)e^{-n} + \left[-e^{-x} \right]_1^{n+1}$$

$$I = -(3+n)e^{-n-1} + (n+2)e^{-n}$$

$$2) \lim U_n = 0 \text{ alors } (U_n)$$

$$3) S_n = U_0 + U_1 + U_2 + \dots + U_n$$

$$S_2 = U_0 + U_1 + U_2.$$

$$\begin{aligned} U_0 &= -3\bar{e}^1 + 2 \\ U_1 &= -4\bar{e}^2 + 3\bar{e}^1 \\ U_2 &= -5\bar{e}^3 + 4\bar{e}^2 \\ S_n &= -5\bar{e}^3 + 2. \end{aligned}$$

$$\begin{aligned} \text{c)} \quad S_n &= U_0 + U_1 + U_2 + \dots + U_n \\ S_n &= -(n+3)\bar{e}^{n+1} + 2 \end{aligned}$$

Exercice n° 70

$$I_n = \int_0^1 x^n \sqrt{1-x} dx$$

$$1) \quad I_{n+1} = \frac{2(n+1)}{2n+3} I_n$$

$$2) \quad I_0 = \int_0^1 \sqrt{1-x} dx = \left[-\frac{2}{3}(1-x)^{\frac{3}{2}} \right]_0^1 = \frac{2}{3}$$

$$3) \quad I_1 = \frac{2}{5} I_0; \quad I_2 = \frac{4}{7} I_1.$$

$$I_n = \prod_{k=0}^n \frac{2k(2k+1)}{2k+3}$$

Exercice n° 71

$$1) \quad I_0 = \int_0^{\frac{\pi}{3}} \frac{1}{\cos x} dx = \frac{1}{2} \ln(7+4\sqrt{3})$$

$$I_1 = \ln 2$$

$$\begin{aligned} 2) \quad \int_0^{\frac{\pi}{3}} \sin^n \cos x dx &= \left[\frac{1}{n+1} \sin^{n+1} x \right]_0^{\frac{\pi}{3}} \\ &= +\frac{1}{n+1} \left(\sin \frac{\pi}{3} \right)^{n+1} = \frac{1}{n+1} \left(\frac{\sqrt{3}}{2} \right)^{n+1} \end{aligned}$$

$$3) \quad I_{n+2} - I_n = +\frac{1}{n+1} \left(\frac{\sqrt{3}}{2} \right)^{n+1}$$

Exercice n° 72

$$1) \quad \ln(\bar{e}^n x) = 2n \Rightarrow \bar{e}^n x = e^{2n}$$

$$x = \frac{e^{2n}}{\bar{e}^n}$$

$$2) \text{a)} \quad \ln(\bar{e}^n \bar{V}_n) = 2n \Rightarrow \bar{V}_0 = e^0 = 1$$

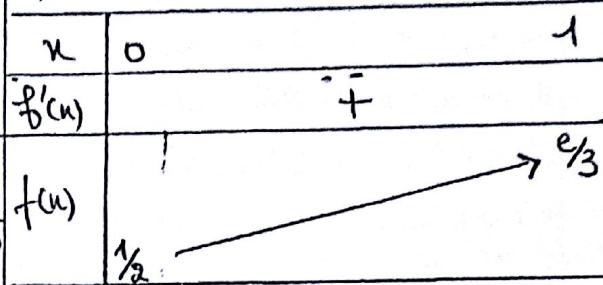
$$\begin{aligned} b) \quad \bar{V}_n &= \frac{e^{2n}}{\bar{e}^n} \quad \bar{V}_{n+1} = \frac{e^2}{\bar{e}} \times \bar{V}_n \\ \text{et} \quad \bar{V}_0 &= 1 \end{aligned}$$

$$\begin{aligned} \text{c)} \quad \bar{V}_n &= \left(\frac{e^2}{\bar{e}} \right)^n \Rightarrow \bar{V}_n > 100 \quad \left(\frac{e^2}{\bar{e}} \right)^n > 100 \\ n > \frac{\ln 100}{\ln \left(\frac{e^2}{\bar{e}} \right)} &\simeq 85,13 \Rightarrow n_0 \simeq 86 \end{aligned}$$

Exercice n° 73

$$1) \text{a)} \quad f''(x) = \frac{e^x (x^2 + 2x + 2)}{(x+2)^2}$$

b)



d) $f''(x) > 0 \Rightarrow f' \text{ est croissante}$

on a $f'(0) \leq f'(x) \leq f'(1)$

$$\Rightarrow -\frac{2}{3} \leq \frac{1}{4} \leq f'(x) \leq \frac{2}{3} \Rightarrow |f'(x)| \leq \frac{2}{3}.$$

2) a) D'après T.I.A.F à $[x; y]$ on a:

$$-f(x) - f(y) \leq \frac{2}{3}(x-y) \quad (x < y)$$

en particulier U_n et $l \in [0; 1]$

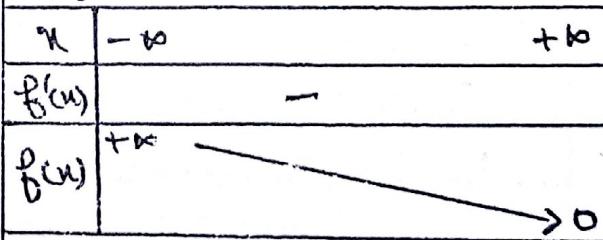
$$\text{alors } -f(l) - f(U_n) \leq \frac{2}{3}(l - U_n)$$

$$\text{d'où } \frac{U_{n+1} - l}{U_n - l} \geq 0 \Rightarrow 0 \leq \frac{U_{n+1} - l}{U_n - l} \leq \frac{2}{3}$$

Exercice n° 74

$$1) \quad f(x) = 2^{-x} = \bar{e}^{-x \ln 2}$$

$$f'(x) = -\ln 2 \bar{e}^{-x \ln 2} < 0$$



$$2) \quad U_n = \int_{n-1}^n 2^{-x} dx = \frac{1}{\ln 2} [\bar{e}^{-x \ln 2}]_{n-1}^n$$

$$U_n = \frac{-1}{\ln 2} e^{-n \ln 2} ; U_{n+1} = \left[\frac{-1}{\ln 2} e^{-n \ln 2} \right]^{n+1}$$

$U_{n+1} = \frac{1}{2} U_n$ alors (U_n) est une suite géométrique.

$$3) S_{1,n} = \int_0^1 2^{-x} dx + \int_1^2 2^{-x} dx + \dots + \int_{n-1}^n 2^{-x} dx \\ = \int_0^1 2^{-x} dx = \frac{-1}{\ln 2} (2^{-1} - 1).$$

$$4) \lim S_{1,n} = \frac{1}{\ln 2}.$$

Exercice n° 75

$$1) a) V_{n+1} = \frac{1}{2} V_n ; b) V_n = \frac{1}{2^n}$$

$$2) a) S_n = (U_1 - U_0) + (U_2 - U_1) + \dots + (U_{n+1} - U_n)$$

$$S_n = -1 + U_{n+1} \Rightarrow U_{n+1} = 1 + S_n$$

$$b) U_n = 1 + S_{n-1} \text{ avec}$$

$$S_{n-1} = V_0 + V_1 + \dots + V_{n-1}$$

$$S_{n-1} = \frac{1}{2} - \frac{1}{2^{n-1}} \Rightarrow U_n = 3 - \frac{1}{2^{n-1}}$$

$$3) n_0 = 15. \text{ car } \left| 3 - \frac{1}{2^{n-1}} - 3 \right| \leq 10$$

Exercice n° 76

$$1) \vartheta_{n+2} = \frac{1}{3} \vartheta_{n+1} \text{ et } \vartheta_2 = 4$$

$$2) W_{n+1} = U_{n+1} - \frac{1}{3} U_n$$

$$W_{n+2} = -\frac{1}{2} W_{n+1} \text{ et } W_2 = -1.$$

$$3) \vartheta_n = 4 \left(\frac{1}{3} \right)^{n-2} \text{ et } W_n = -\left(\frac{1}{2} \right)^{n-2}$$

$$\lim \vartheta_n = 0 \text{ et } \lim W_n = 0$$

$$5) S_n = U_1 + U_2 + \dots + U_r.$$

$$\vartheta_{n+1} = U_{n+1} + \frac{1}{2} U_n \Rightarrow U_n = \frac{6}{5} (\vartheta_{n+1} - W_n)$$

$$W_{n+1} = U_{n+1} - \frac{1}{3} U_n$$

$$S_n = \sum_{k=1}^n U_k = \frac{6}{5} \sum_{k=1}^n (\vartheta_{k+1} - W_{k+1}).$$

$$S_n = \frac{6}{5} \vartheta_2 \left(1 - \frac{\left(\frac{1}{3} \right)^{n-1}}{\frac{2}{3}} \right) + \frac{6}{5} \left[1 - \frac{\left(\frac{1}{2} \right)^{n-1}}{\frac{3}{2}} \right]$$

$$\lim_{n \rightarrow +\infty} S_n = \frac{40}{5} = 8$$

Exercice n° 77

$$1) U_1 = \frac{U_0 + 1}{U_0 + 2} ; U_2 = \frac{2U_0 + 3}{3U_0 + 5}$$

2) - Soit $a_n \mathbb{Z}$, elle est telle que $a_0 = 1$, $a_1 = 2$ et $a_2 = 5$.

$$U_n = \frac{a_n U_0 + a_{n-1}}{(a_{n-1}) U_0 + a_n}$$

$$U_{n+1} = \frac{(3a_n - 1)U_0 + 3a_{n-2}}{(3a_{n-1})U_0 + 3a_{n-2}}$$

$$3) a) b_{n+1} = 3b_n \text{ et } a_n = 2 \times 3^n + \frac{1}{2}$$

Exercice n° 78

$$1) S_{n+1} = \frac{1}{3} S_n \text{ et } S_0 = 2, S_n = \frac{2}{3^n}$$

$$2) S_n = 3 \left[1 - \left(\frac{1}{3} \right)^n \right]$$

$$S_n = U_n - U_0 \Rightarrow U_n = S_n + U_0$$

$$U_n = 4 - 3 \left(\frac{1}{3} \right)^n$$

Exercice n° 79

$$1) a) U_{n+1} = e^2 U_n \text{ et } U_0 = e$$

$$b) \lim_{n \rightarrow +\infty} U_n = +\infty$$

$$2) a) S_{0,n} = \frac{e}{1-e^2} \left(1 - e^{2n+2} \right)$$

$$b) \lim S_{0,n} = +\infty$$

$$c) S_{0,n} > 10^6 \Rightarrow n \geq 7,33$$

$$n_0 = 8$$

3) $V_n = \ln(U_n)$, $n \in \mathbb{N}$

a) $V_{n+1} = \ln(U_{n+1})$

$V_{n+1} - V_n = \varphi$ et $V_0 = 1$.

b) $S_n = \frac{n+1}{2} \left(\frac{V_0 + V_n}{2} \right) = (n+1)^2$

c) $P_n = U_0 \times U_1 \times U_2 \times \dots \times U_n$

or $U_n = e^{V_n}$

$P_n = e^{S_n} = e^{(n+1)^2}$

d) $P_n = e^{100} \Rightarrow (n+1)^2 = 100$
 $n = 9$.

Exercice 80

1) $f(x) = 2x - x^2$ $D_f = [0; 1]$

2) $f'(x) = 2 - 2x \geq 0$ alors f est croissante

b) $f([0; 1]) = [f(0); f(1)] = [0; 1]$

2) $\begin{cases} U_0 = \frac{3}{7} \\ U_{n+1} = f(U_n) = 2U_n - U_n^2 \end{cases}$

a) $0 \leq U_n \leq 1 \Rightarrow U_0 = \frac{3}{7} ; 0 \leq U_0 < 1$

 $U_1 = \frac{33}{49} \Rightarrow 0 \leq U_1 \leq 1$. Supposons que $0 \leq U_n < 1$; $\forall n \in \mathbb{N}$ et démontrons que $0 \leq U_{n+1} \leq 1 \Rightarrow f(U_n) \leq f(U_n) \leq f(1)$

$0 \leq U_{n+1} \leq 1$ d'où $0 \leq U_n \leq 1$.

b) $U_{n+1} - U_n = 2U_n - U_n^2 - U_n = U_n(U_n - 1)$

$0 \leq U_n \leq 1 \Rightarrow U_n > U_n^2 \Rightarrow U_n - U_n^2 > 0$

$U_{n+1} - U_n > 0$ alors (U_n) est croissante.

c) (U_n) est croissante et majorée par 1, alors (U_n) est convergente.

3) $V_{n+1} = \ln(1 - U_{n+1}) = \ln(1 - U_n)^2$

$V_{n+1} = 2V_n$ et $V_0 = \ln\left(\frac{4}{7}\right)$

b) $V_n = 2^n \ln\left(\frac{4}{7}\right)$

c) $\lim_{n \rightarrow \infty} U_n = 1$ et $\lim_{n \rightarrow \infty} V_n = -\infty$

Exercice n° 81

2) a) $d_{n+1} = \frac{5}{12} d_n \Rightarrow d_n = 7 \times \left(\frac{5}{12}\right)^n$

3) b) $a_0 < a_n$ car la suite (a_n) est strictement croissante.b) $b_n < b_0$ car la suite (b_n) est strictement décroissante.c) $a_n < b_n$ car $d_n > 0$ d'où $a_0 < b_0$

4) a) $a_{n+1} - a_n = \frac{d_n}{3}$

$a_1 - a_0 = \frac{d_0}{3}$

$a_2 - a_1 = \frac{d_1}{3}$

\vdots $\Rightarrow a_n - a_0 = \frac{1}{3} [d_0 + d_1 + \dots + d_{n-1}]$

$a_n - a_{n-1} = \frac{d_{n-1}}{3}$

b) $a_n - a_0 = 4 \left[1 - \left(\frac{5}{12}\right)^n \right]$

$\lim a_n = 5$ et $\lim b_n = 5$.

Exercice n° 82

A/ 2) $(z-1)(z^2 + (-1-3i)z - 2+2i) = 0$

$\Delta = (1-i)^2 \Rightarrow S = \{1; 1+i; 2i\}$

B/ -1) $A_2 = \frac{OA_2}{OA_1} = \sqrt{2}$; $\theta = \frac{\pi}{4}$, 0°

2) $A_3 = S(A_2) \Rightarrow \overline{OA_3} = \sqrt{2} \overline{OA_2} = (\sqrt{2})^2 OA_1$

\vdots $\text{mes}(\overrightarrow{OA_2}; \overrightarrow{OA_3}) = \frac{\pi}{4}$

3) $A_5 = S(A_3) \Rightarrow \overline{OA_5} = \sqrt{2} \overline{OA_3} = (\sqrt{2})^3 OA_1$

\vdots $\text{mes}(\overrightarrow{OA_3}; \overrightarrow{OA_5}) = \frac{\pi}{4}$

3) $d_n(A_n; A_{n+1}) = \sqrt{2} d_n(A_{n+1}; A_n)$

$d_n = d(A_1; A_2) + \sqrt{2} d(A_2; A_3) + \dots + \sqrt{2} d(A_n; A_{n+1})$

$= d(A_1; A_2) + \sqrt{2} d(A_2; A_3) + \dots + (\sqrt{2})^{n-1} d(A_1; A_2)$

$= (1 + \sqrt{2} + \sqrt{2}^2 + \dots + \sqrt{2}^{n-1}) d(A_1; A_2)$

Corrigé	
$L_n = \frac{1 \times [\sqrt{2}^{n-1} - 1]}{\sqrt{2} - 1} = (1 + \sqrt{2})(1 + \sqrt{2}^{n-1})$	d'où $U_n > 0$. 2) $U_n = \int_{n-1}^n 2e^{-\frac{1}{2}x} dx = -4[e^{-\frac{1}{2}x}]_{n-1}^n$
<u>Exercice n° 83</u>	$U_n = 4(e-1)e^{-\frac{1}{2}n}$
1) $m = -4$; $A_{n+2} = -7A_n + 8A_{n+1}$	3) $U_{n+1} = e^{\frac{1}{2}}U_n$ et $U_0 = 4(e-1)$
a) $B_{n+1} = A_{n+2} - A_{n+1}$	4) $S_n = U_1 + U_2 + \dots + U_n = U_1 \left(\frac{1 - e^{-\frac{1}{2}n}}{1 - e^{-\frac{1}{2}}} \right)$
$B_{n+1} = 7B_n$ et $B_0 = 2$	$S_n = 4e^{-\frac{1}{2}}(e-1) \left(\frac{1 - e^{-\frac{1}{2}n}}{1 - e^{-\frac{1}{2}}} \right)$
b) $B_n = 2 \times 7^n$	$\lim S_n = 4 \frac{(e-1)e^{-\frac{1}{2}}}{1 - e^{-\frac{1}{2}}}$
c) $S_n = -\frac{1}{3}(1 - 7^{n+1})$	<u>Exercice n° 85</u>
d) $A_{n+1} = 1 + S_n$	1) $I_0 = \int_1^e x dx = \frac{1}{2}(e^2 - 1)$
$B_n = A_{n+1} - A_n$	2) $I_1 = \int_1^e x \ln x dx \Rightarrow u = \ln x \quad u' = \frac{1}{x}$
$B_0 = A_1 - A_0$	$v = x \quad v' = 1$
$B_1 = A_2 - A_1$	$I_1 = \frac{1}{4}(e^2 + 1)$
\vdots	3) $I_{n+1} = \int_1^e x (\ln x)^{n+1} dx$
$B_n = A_{n+1} - A_n$	$\left \begin{array}{l} u = (\ln x)^{n+1} \quad u' = \frac{n+1}{x}(\ln x)^n \\ v = x \quad v' = 1 \end{array} \right.$
e) $A_{n+1} = 1 - \frac{1}{3}(1 - 7^{n+1})$	$I_{n+1} = \frac{1}{2}e^n - \frac{n+1}{2}I_n$
$A_n = \frac{2}{3} + \frac{7^n}{3} = \frac{1}{3}(2 + 7^n)$	$I_2 = \frac{1}{2}e^2 + \frac{3}{2}I_1$
$\lim A_n = +\infty$	<u>Exercice n° 86</u>
2) $m = 2 \Rightarrow A_{n+2} - A_{n+1} = 2$	1) $U_1 = 2000$; $U_2 = 3050$; $U_3 = 4525$
$A_0 = 1$; $B_n = A_{n+1} - A_n = 2$ alors	$U_4 = 5310,125$
(B_n) est constante.	2) $U_{n+1} = 1,05U_n + 950$
b) $T_n = A_0 + A_1 + \dots + A_n$	$U_1 = 1,05 \times 1000 + 950 = 2000$
$T_n = \frac{n+1}{2} (A_0 + A_n) \approx (n+1)^2$	$U_2 = 1,05 \times 2000 + 950 = 3050$
<u>Exercice n° 84</u>	d'où $U_{n+1} = 1,05U_n + 950$
d) $D_E = \mathbb{R}$ et $\forall n \in \mathbb{N}, e^{-\frac{1}{2}n} > 0$	3) $U_n = U_1 + 19000$
$\text{f}(x) > 0 \Rightarrow \int_{n-1}^n f(x) dx > 0$	

$$U_{n+1} = U_n + 19000 = 1,05U_n + 19950$$

$$U_{n+1} = 1,05U_n \text{ et } U_0 = 20.000$$

$$4) U_n = 20.000 (1,05)^n$$

$$5) U_n = 20.000 (1,05)^n - 19000$$

$$20.000 (1,05)^n - 19000 = 1000.000$$

$$\Rightarrow n = \frac{\ln(50,95)}{\ln(1,05)} = 80,56$$

$n \geq 81$

Il peut espérer d'avoir 1000.000 € à partir de 81 ans.

Exercice n° 87

$$1) b) F(x) = x - \ln(1+e^x) + C (C \in \mathbb{R})$$

$$d) G(x) = F(x) + \frac{1}{1+e^x}$$

$$2) I_1 = \int_0^1 f(x) dx = 1 - \ln(1+e)$$

$$I_2 = \int_0^1 g(x) dx = \frac{1}{2} + \ln 2 + \frac{1}{1+e} - \ln(1+e)$$

$$b) \frac{1}{(1+e^x)^{n+1}} = \frac{1+e^x - e^x}{(1+e^x)^{n+1}}$$

$$= \frac{1}{(1+e^x)^n} - \frac{e^x}{(1+e^x)^{n+1}}$$

$$I_{n+1} = I_n - \int_0^1 \frac{e^x}{(1+e^x)^{n+1}} dx$$

c) $I_{n+1} - I_n < 0$ la suite est strictement décroissante.

$$\forall x \in [0;1], \frac{1}{(1+e^x)^n} > 0 \Rightarrow I_n > 0$$

$$\frac{1}{(1+e^x)^n} \leq \frac{1}{2^n} \text{ donc } I_n \leq \int_0^1 \frac{1}{2^n} dx$$

on conclut que $0 < I_n < \frac{1}{2^n}$

Exercice n° 88

$$1) a) f'(x) = \frac{1}{\sqrt{1+x^2}} \Rightarrow U_0 = \left[\ln(x + \sqrt{1+x^2}) \right]_0^1$$

$$U_0 = \ln(1 + \sqrt{2})$$

$$b) U_1 = \frac{1}{2} \int_0^1 \frac{2x}{\sqrt{1+x^2}} dx = \frac{1}{2} \left[2\sqrt{1+x^2} \right]_0^1$$

$$2) a) U_{n+1} - U_n \leq \int_0^1 \frac{x^n(x-1)}{\sqrt{1+x^2}} dx$$

$$\forall x \in [0;1], x-1 \leq 0 \Rightarrow U_{n+1} - U_n \leq 0$$

$$b) \forall n \in [0;1], 1 \leq \sqrt{1+x^2} \leq \sqrt{2}$$

$$\frac{x^n}{\sqrt{2}} \leq \frac{x^n}{\sqrt{1+x^2}} \leq x^n$$

$$\frac{1}{\sqrt{2}} \int_0^1 x^n dx \leq U_n \leq \int_0^1 x^n dx$$

$$\frac{1}{(n+1)\sqrt{2}} \leq U_n \leq \frac{1}{n+1}$$

$$3) a) U_n + U_{n-2} = \int_0^1 \frac{x^n + x^{n-2}}{\sqrt{1+x^2}} dx$$

$$= \int_0^1 \frac{x^{n-2} [1+x^2]}{\sqrt{1+x^2}} dx$$

$$U_n + U_{n-2} = I_n$$

$$b) I_n = \int_0^1 x^{n-2} \sqrt{1+x^2} dx$$

$$\begin{cases} U = \sqrt{1+x^2} \Rightarrow U' = \frac{x}{\sqrt{1+x^2}} \\ V = x^{n-2} \Rightarrow V' = \frac{x^{n-1}}{n-1} \end{cases}$$

$$I_n = \left[\frac{x^{n-1} \sqrt{1+x^2}}{n-1} \right]_0^1 - \frac{1}{n-1} \int_0^1 \frac{x^n}{\sqrt{1+x^2}} dx$$

$$(n-1)I_n + I_n = \sqrt{2} \text{ d'où } n \geq 3$$

$$nU_n + (n-1)U_{n-2} = \sqrt{2}$$

$$d) \lim_{n \rightarrow +\infty} U_n = \frac{\sqrt{2}}{2}$$

Exercise 89

$$\begin{cases} x_{n+1} = -\frac{1}{2}y_n + 1 \\ y_{n+1} = \frac{1}{2}x - \frac{1}{2} \end{cases} \quad M_n(x_n; y_n)$$

$$\begin{aligned} 1) M_0(x_0; y_0) &= S2(1; 0) \Rightarrow \begin{cases} x_0 = 1 \\ y_0 = 0 \end{cases} \\ M_1 \quad \begin{cases} x_1 = -\frac{1}{2}y_0 + 1 = 1 \\ y_1 = \frac{1}{2}x_0 - \frac{1}{2} = 0 \end{cases} \end{aligned}$$

Supposons que $M_n = M_0$ et montrons que $M_{n+1} = M_0$

$$H_n = M_0 \Rightarrow \begin{cases} x_n = 1 \\ y_n = 0 \end{cases} \Rightarrow \begin{cases} x_{n+1} = -\frac{1}{2}y_n + 1 = 1 \\ y_{n+1} = \frac{1}{2}x_n - \frac{1}{2} = 0 \end{cases}$$

$$M_{n+1} = M_0$$

$$2) M_1(5; 4)$$

$$a) M_1 = \begin{cases} x_1 = -2 + 1 = -1 \\ y_1 = \frac{5}{2} - \frac{1}{2} = 2 \end{cases} \Rightarrow M_1(-1; 2)$$

$$M_2(0; -1); \quad M_3\left(\frac{3}{2}; -\frac{1}{2}\right)$$

$$b) (M_0 M_1) \parallel (M_2; M_3) \Leftrightarrow \det(M_0 M_1; M_2 M_3) = 0$$

$$\begin{vmatrix} \frac{3}{2} - 0; & -1 - 5 \\ -\frac{1}{2} + 1 & 2 - 4 \end{vmatrix} = \begin{vmatrix} \frac{3}{2} - 6 \\ \frac{1}{2} - 2 \end{vmatrix} = -3 + 3 = 0$$

$$d) (M_0 M_1) \parallel (M_2 M_3)$$

$$c) (M_0 M_2) \perp (M_1 M_3)$$

$$\begin{pmatrix} 0 - 5 \\ -1 - 4 \end{pmatrix} \times \begin{pmatrix} \frac{3}{2} + 1 \\ -\frac{1}{2} - 2 \end{pmatrix} \stackrel{?}{=} 0 \Rightarrow \begin{pmatrix} -5 \\ -5 \end{pmatrix} \begin{pmatrix} \frac{5}{2} \\ -\frac{5}{2} \end{pmatrix} = 0$$

$$- \frac{25}{2} + \frac{25}{2} = 0 \quad d) (M_0 M_2) \perp (M_1 M_3)$$

$$3) M_0 \notin S2(1; 0)$$

$$z_n = x_n + iy_n \Rightarrow M_n(z_n)$$

$$a) z_{n+1} = \frac{1}{2}iz_n + 1 - \frac{1}{2}i = x_{n+1} + iy_{n+1}$$

$$\begin{aligned} z_{n+1} &= i\left(\frac{1}{2}x_n - \frac{1}{2}y_n + 1 - \frac{1}{2}i\right) \\ &= i\left(\frac{1}{2}x_n + \frac{1}{2}iy_n\right) + 1 - \frac{1}{2}i \end{aligned}$$

$$d) z_{n+1} = \frac{1}{2}iz_n + i - \frac{1}{2}i$$

$$b) z_n = z_{n-1}$$

Corrigés

$$\begin{aligned} z_{n+1} &= \frac{1}{2}iz_n \Rightarrow z_{n+1} = z_{n+1} - 1 \\ &= \frac{1}{2}iz_n - \frac{1}{2}i \end{aligned}$$

$$z_{n+1} = \frac{1}{2}i(z_{n-1}) = \frac{1}{2}iz_n$$

$$c) d_n = S2 M_n = |z_n|.$$

$$|z_{n+1}| = \frac{1}{2}|z_n|$$

$$|z_n| = \frac{1}{2}|z_{n-1}|$$

$$|z_{n-1}| = \frac{1}{2}|z_{n-2}|$$

$$\vdots \quad |z_1| = \frac{1}{2}|z_0|$$

$$d_n = \left(\frac{1}{2}\right)^n |z_0| \text{ ou } d_0 = |z_0|$$

$$d_n = \frac{d_0}{2^n}$$

$$d) \text{mes}(\overrightarrow{S2M_n}; \overrightarrow{S2M_{n+1}}) = \arg_0(z_{n+1})$$

$$\text{mes}(\overrightarrow{S2M_n}; \overrightarrow{S2M_{n+1}}) = \arg\left(\frac{1}{2}i\right) = \frac{\pi}{2}$$

$$(M_n M_{n+2}) \perp (M_{n+1} M_{n+3}).$$

Exercise 90

$$I_n = \int_0^1 \frac{e^{nx}}{1+e^x} dx$$

$$1) a) I_1 = \int_0^1 \frac{e^x}{1+e^x} dx = \left[\ln(1+e^x) \right]_0^1$$

$$b) I_0 + I_1 = \int_0^1 \frac{1+e^x}{1+e^x} dx = [x]_0^1$$

$$I_0 + I_1 = 1 \Rightarrow I_0 = 1 - \ln\left(\frac{1+e}{2}\right)$$

$$2) I_{n+1} + I_n = \int_0^1 \frac{e^{(n+1)x}}{1+e^x} dx + \int_0^1 \frac{e^{nx}}{1+e^x} dx \\ = \int_0^1 \frac{e^{nx}e^x + e^{(n+1)x}}{1+e^x} dx = \int_0^1 e^{nx} dx$$

$$I_{n+1} + I_n = \frac{1}{n} e^n - \frac{1}{n} = \frac{1}{n} (e^n - 1)$$

$$b) I_2 + I_1 = e - 1 \Rightarrow I_2 = e - 1 - \ln\left(\frac{1+e}{2}\right)$$

$$I_3 + I_2 = \frac{1}{2}(e^2 - 1)$$

$$I_3 = \frac{1}{2}(e-1)^2 + \ln\left(\frac{1+e}{2}\right)$$

$$3) a) \forall n \in [0;1] e^{nx} < e^{(n+1)x}$$

$$\forall n \in \mathbb{N}, n < n+1 \quad nx < (n+1)x \\ e^{nx} < e^{(n+1)x}$$

$$b) e^{nx} < e^{(n+1)x} \Rightarrow \frac{e^{nx}}{1+e^x} < \frac{e^{(n+1)x}}{1+e^x}$$

$$\int_0^1 \frac{e^{nx}}{1+e^x} dx < \int_0^1 \frac{e^{(n+1)x}}{1+e^x} dx$$

$$I_n < I_{n+1} \Rightarrow I_{n+1} - I_n > 0$$

alors (I_n) est croissante.

$$4) a) \forall x \in [0;1] \frac{1}{4} < \frac{1}{1+e^x} < \frac{1}{2}$$

$$\forall x \in [0;1] \Rightarrow 0 \leq x \leq 1$$

$$e^0 \leq e^x \leq e^1 \Rightarrow 2 \leq 1+e^x \leq 1+e$$

$$\frac{1}{1+e} \leq \frac{1}{1+e^x} \leq \frac{1}{2}$$

$$\text{d'où } \frac{1}{4} \leq \frac{1}{1+e^x} \leq \frac{1}{2}$$

$$b) \frac{e^{nx}}{4} \leq \frac{e^{nx}}{1+e^x} \leq \frac{e^{nx}}{2}$$

$$\frac{1}{4} \left[\frac{1}{n} e^{nx} \right]_0^1 \leq I_n \leq \frac{1}{2} \left[\frac{1}{n} e^{nx} \right]_0^1$$

$$\frac{1}{4n} (e^n - 1) \leq I_n \leq \frac{1}{2n} (e^n - 1)$$

$$c) \lim_{n \rightarrow \infty} \frac{e^n - 1}{4n} = +\infty \quad \text{alors} \lim_{n \rightarrow \infty} I_n = +\infty$$

Exercice n° 91

$$\begin{cases} U_0 = \frac{3}{2} \\ U_{n+1} = \frac{2U_n}{2U_n + 5}, n \in \mathbb{N} \end{cases}$$

$$1) U_1 = \frac{3}{8}$$

$$2) \forall n \in \mathbb{N}; U_n > 0$$

$U_0 > 0, U_1 > 0$ supposons $U_n > 0$ et montrons que $U_{n+1} > 0$.

$$U_n > 0; 2U_n > 0 \Rightarrow 2U_n + 5 > 5$$

$$\frac{2U_n}{2U_n + 5} > 0 \Rightarrow U_{n+1} > 0 \text{ d'où } U_n > 0$$

$$3) \forall n \in \mathbb{N}; 0 < U_{n+1} < \frac{2}{5} U_n$$

D'après 2) $U_{n+1} > 0 \Leftrightarrow 0 < U_{n+1}$

$$U_{n+1} = \frac{2U_n}{2U_n + 5} = \frac{2U_n}{5} \left(\frac{5}{2U_n + 5} \right)$$

$$\text{or } 2U_n > 0 \Rightarrow 2U_n + 5 > 5$$

$$\text{-- } \frac{5}{2U_n + 5} < 1 \Rightarrow U_{n+1} < \frac{2U_n}{5}$$

$$\text{d'où } 0 < U_{n+1} < \frac{2U_n}{5}$$

$$0 < U_n < \frac{2U_{n-1}}{5}$$

$$0 < U_{n-1} < \frac{2U_{n-2}}{5}$$

$$\vdots$$

$$0 < U_1 < \frac{2U_0}{5}$$

$$0 < U_n < \left(\frac{2}{5}\right)^n U_0$$

$$b) \lim_{n \rightarrow +\infty} \frac{3}{2} \left(\frac{2}{5} \right)^n = 0 \text{ d'où } \lim U_n = 0$$

$$4) a) U_{n+1} = \frac{2}{5} U_n \text{ et } U_0 = \frac{3}{4}$$

$$b) U_n = \frac{3}{4} \left(\frac{2}{5} \right)^n \text{ et } U_n = \frac{9 \left(\frac{2}{5} \right)^n}{4 - 3 \left(\frac{2}{5} \right)^n}$$

Exercice n° 92

$$1) Z_{n+1} = (-i)^{n+1} (1+i\sqrt{3}) = -i Z_n$$

$$Z_n = (-i)^n Z_0$$

$$2) Z_0 = 1+i\sqrt{3} = 2e^{i\frac{\pi}{3}}$$

$$Z_1 = -i(1+i\sqrt{3}) = 2e^{-i\frac{4\pi}{3}}$$

$$Z_2 = -1-i\sqrt{3} = 2e^{i\frac{4\pi}{3}}$$

$$Z_3 = i(1+i\sqrt{3}) = 2e^{i\frac{5\pi}{3}}$$

$$Z_4 = Z_0 = 1+i\sqrt{3} = 2e^{i\frac{\pi}{3}}$$

4) $OM_3 = |z_n| = 2$

5) $M_n M_{n+1} = \frac{\sqrt{5}}{n}$

a) $M_n M_{n+1} = |z_{n+1} - z_n| = |z_{n+1}| |z_n|$
 $M_n M_{n+1} = 2\sqrt{2}.$

b) $l_n = \sum_{k=0}^n M_k M_{k+1}$

$l_n = M_0 M_1 + M_1 M_2 + \dots + M_n M_{n+1}$

$M_0 M_1 = |z_1 - z_0| = \sqrt{2} |z_0|$

$M_1 M_2 = |z_2 - z_1| = |z_2 - z_1| = \sqrt{2} |z_1|$

$M_n M_{n+1} = 2\sqrt{2}.$

$l_n = \underbrace{2\sqrt{2} + 2\sqrt{2} + \dots + 2\sqrt{2}}_{(n+1) \text{ fois}}$

$l_n = 2\sqrt{2}(n+1).$

6) $\text{Mes}(\overrightarrow{OM_0}, \overrightarrow{OM_n}) = \arg\left(\frac{z_n}{z_0}\right) = \text{arg}(i)$

$\text{mes}(\overrightarrow{OM_0}, \overrightarrow{OM_n}) = -\frac{n\pi}{2} \text{ ou } \frac{3\pi}{2} n$

7) $0, M_0, M_n$ sont alignés.

$\text{mes}(\overrightarrow{OM_0}, \overrightarrow{OM_n}) = 0 \text{ ou } \pi$

$n = \frac{2}{3} \text{ ou } n = 0.$

Exercice n° 93

$U_n = \int_n^{n+1} e^{-2x} dx$

1) $U_0 = \int_0^1 e^{-2x} dx = \left[-\frac{1}{2} e^{-2x} \right]_0^1 = \frac{1}{2} (1 - e^{-2})$

$U_1 = \frac{1}{2} e^{-2} (1 - e^{-2}), U_2 = \frac{1}{2} e^{-4} (1 - e^{-2})$

2) $U_n = \left[-\frac{1}{2} e^{-2x} \right]_n^{n+1} = -\frac{1}{2} e^{-2n} (1 + e^{-2})$

3) $U_{n+1} = -\frac{1}{2} e^{-2(n+1)} (e^{-2} - 1) = e^{-2} U_n$

4) $S_n = U_0 \times \left(\frac{1 - q^n}{1 - q} \right) = \frac{1}{2} (e^{2n} - 1)$

Exercice n° 94

a) $U_0 = \frac{4}{4 - U_0} \Rightarrow (U_0 - 2)^2 = 0$

$U_0 = 2.$

b) $U_n < 2 \Rightarrow -2 < -U_n \Rightarrow 2 < 4 - U_n$
 $\frac{1}{4 - U_n} < \frac{1}{2} \Rightarrow \frac{4}{4 - U_n} < \frac{4}{2} \Rightarrow U_{n+1} < 2$

d'où $U_n < U_{n+1} < 2$

c) $U_n < U_{n+1}$, alors (U_n) est croissante. $\forall n \in \mathbb{N}$ et majorée par 2 par conséquent elle est convergente.

d) $V_{n+1} - V_n = -\frac{1}{2}$ et $V_0 = -\frac{1}{3}$

$\Rightarrow V_n = -\left(\frac{1}{3} + \frac{n}{2}\right)$ et $U_n = \frac{2V_n + 1}{V_n}$
 $U_n = \frac{2 - 2n}{-2n - 3n}$

Exercice n° 95

1) $U_0 = 3 > 0, U_1 = \frac{11}{5} > 0$ supposons que $U_n > 0$ et démontrons que $U_{n+1} > 0$.

$U_n > 0 \Rightarrow 2 + 3U_n > 2 \text{ et } 2 + U_n > 2$

$U_{n+1} > 1 > 0 \text{ d'où } U_n > 0 \forall n \in \mathbb{N}$

2) $U_{n+1} - 2 = \frac{U_n - 2}{U_n + 2}$ et $U_{n+1} - 3 = \frac{-4}{U_n + 2}$

3) Comme $U_n > 0 \Rightarrow -\frac{4}{2 + U_n} < 0$
 $\Rightarrow U_{n+1} < 3$ et $U_{n+1} - 2 > -2, U_{n+1} + 2 > 2$

$U_{n+1} - 2 > -4 \Rightarrow U_{n+1} > 1 \text{ d'où } 1 < U_{n+1} < 3 \Rightarrow 1 < U_n < 3.$

$$*) U_{n+1} - U_n = \frac{(U_{n+1})(U_n - 1)}{U_{n+2}} < 0$$

$U_{n+1} - U_n < 0$ alors (U_n) est décroissante et minorée par 0 alors elle est convergente.

Exercice n° 96

$$U_n = \frac{1}{2} \left(U_{n-1} + \frac{1}{U_{n-1}} \right) \quad n \geq 1$$

1) $U_0 > 0$, supposons que $U_n > 0$ et démontrons que $U_{n+1} > 0$

$$U_n > 0 \Rightarrow U_n + \frac{1}{U_n} > 0 \Rightarrow \frac{1}{2} \left(U_n + \frac{1}{U_n} \right) > 0$$

$\Rightarrow U_{n+1} > 0$ d'où $U_n > 0$.

$$2) U_0 = U_1 = \frac{1}{2} \left(U_0 + \frac{1}{U_0} \right) \Rightarrow 2U_0^2 = U_0^2 + 1$$

$$U_0 = 1.$$

$$3) a) U_0 \neq 1 \Rightarrow U_{n+1} - 1 = \frac{1}{2U_n} (U_n - 1)^2$$

$$U_{n+1} - 1 = \frac{1}{2} \left(U_n + \frac{1}{U_n} \right) - 1$$

$$U_{n+1} - 1 = \frac{U_n^2 - 2U_n + 1}{2U_n} = \frac{(U_n - 1)^2}{2U_n}$$

$$\therefore U_{n+1} + 1 = \frac{1}{2} \left(U_n + \frac{1}{U_n} \right) + 1 = \frac{(U_n + 1)^2}{2U_n}$$

$$b) (U_{n+1} - 1) > 0 \Rightarrow U_{n+1} > 1 \Rightarrow U_n > 0$$

$$c) U_{n+1} - U_n = -\frac{U_n^2 + 1}{2U_n} = -\frac{(U_n + 1)(U_n - 1)}{2U_n}$$

$$U_n > 0 \quad U_n + 1 > 0 \quad \sim (U_n - 1) < 0$$

alors $U_{n+1} - U_n < 0$ alors (U_n) est décroissante.

$U_n - 1 > 0 \Rightarrow U_n > 1$ alors (U_n) est minorée par 1 par conséquent elle est convergente.

Exercice n° 97

Corrige

$$1) U_n > 1; \quad \forall n \in \mathbb{N}; \quad U_0 = 2 > 1$$

$U_1 = \frac{4}{3} > 1$ supposons que $U_n > 1$ et démontrons que $U_{n+1} > 1$

$$U_n > 1 \Rightarrow 2U_n - 1 > 1 \Rightarrow \frac{U_n^2}{2U_n - 1} > 1$$

$U_{n+1} > 1$ d'où $U_n > 1 \quad \forall n \in \mathbb{N}$.

$$2) W_{n+1} = \ln(U_{n+1}) = \ln\left(\frac{U_{n+1}}{U_n}\right)$$

$$a) W_{n+1} = \ln\left(\frac{U_n - 1}{U_n}\right)^2 = 2W_n \text{ et}$$

$$W_0 = -\ln 2.$$

$$b) W_n = -2^n \ln 2$$

$$W_n = \ln V_n \Rightarrow V_n = e^{W_n} = e^{-2^n \ln 2}$$

$$U_n = \frac{1}{1 - V_n} = \frac{1}{1 - e^{-2^n \ln 2}}$$

$$c) \lim U_n = 1.$$

Exercice n° 99

$$1) U_1 = \frac{1}{4}; \quad U_2 = \frac{1}{13}$$

$$2) a) V_{n+1} = \ln\left(\frac{U_{n+1}}{U_n}\right) = \ln\left(\frac{1}{3}\left(\frac{U_n}{U_{n+2}}\right)\right)$$

$$V_{n+1} = -\ln 3 + V_n \text{ et } V_0 = -\ln 3$$

$$b) V_n = -(n+1)\ln 3.$$

$$U_n = e^{V_n}(U_n + 2)$$

$$U_n = \frac{2e^{-(n+1)\ln 3}}{1 - e^{-(n+1)\ln 3}}$$

Exercice n° 100

$$1) U_1 = U_0 \Rightarrow U_0 = 2 + \frac{4}{U_0 + 1}$$

$$U_0^2 - U_0 - 6 = 0 \Rightarrow (U_0 - 3)(U_0 + 2) = 0$$

$U_0 = 3$ ou $U_0 = -2$.

2) $U_n > -1$; $U_0 = 3 > -1$

Supposons que $U_n > -1$ et montrons que $U_{n+1} > -1$.

$$U_{n+1} > 0 \Rightarrow 0 < \frac{1}{U_{n+1}} < 1$$

$$2 < 2 + \frac{4}{U_{n+1}} < 6 \Rightarrow 2 < U_{n+1} < 6$$

$$-1 < 2 - U_{n+1} < 6 \Rightarrow U_{n+1} > -1$$

$$U_n > -1.$$

3) a) $V_n = \frac{U_n - 3}{U_n + 2} \Rightarrow V_{n+1} = -\frac{1}{4} V_n$

et $V_1 = \frac{U_1 - 3}{U_1 + 2}$.

b) $V_n = V_1 \times \left(-\frac{1}{4}\right)^{n-1}$.

$$U_n = \frac{2V_n + 3}{1 - V_n} = \frac{2V_1 \left(-\frac{1}{4}\right)^{n-1} + 3}{1 - V_1 \left(-\frac{1}{4}\right)^{n-1}}$$

Exercice n° 101

$$I_n = \int_{n\pi}^{(n+1)\pi} e^x \sin x \, dx$$

1) $U' = e^x \quad U = -e^{-x}$

$$V = \sin x \quad V' = \cos x$$

$$I_n = \left[-e^x \sin x \right]_{n\pi}^{(n+1)\pi} + \int_{n\pi}^{(n+1)\pi} e^x \cos x \, dx$$

$$\int_{n\pi}^{(n+1)\pi} e^x \cos x \, dx = \left[-e^x \cos x \right]_{n\pi}^{(n+1)\pi} - \int_{n\pi}^{(n+1)\pi} e^x \sin x \, dx$$

$$I_n = \left[-e^x \sin x \right]_{n\pi}^{(n+1)\pi} + \left[-e^x \cos x \right]_{n\pi}^{(n+1)\pi} - I_n$$

$$I_n = \frac{1}{2} (\cos n\pi + \sin n\pi) (\bar{e}^{\bar{n}\pi} + 1) \bar{e}^{-n\pi}$$

Corrigés

$$2) I_{n+1} = \frac{(-\cos n\pi - \sin n\pi)(\bar{e}^{\bar{n}\pi} + 1) \times \bar{e}^{\bar{n}\pi} \times \bar{e}^{-n\pi}}{2}$$

$$I_{n+1} = -\bar{e}^{\bar{n}\pi} I_n \text{ et } I_0 = \frac{1}{2} (\bar{e}^{\bar{n}\pi} + 1)$$

$$3) S_{0,n} = I_0 \left(\frac{1 - \bar{e}^{(n+1)\pi}}{1 - \bar{e}^{n\pi}} \right) = \frac{1}{2} \left[1 - \left(-\bar{e}^{n\pi} \right)^{n+1} \right]$$